COUPLING IMPEDANCE OF A LONG SLOT AND AN ARRAY OF
SLOTS IN A CIRCULAR VACUUM CHAMBER *

G. V. Stupakov, Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 USA

Abstract wherex = w/c. The pipe is assumed to have a small hole
located atz = 0 with characteristic dimensions much less than
eradiu. Perturbation of the electromagnetic field caused by
hole can be represented as a superposition of the waveguide
des propagating away from the hole.
a(El\/e choose normalization of the eigenmodes in a circular pipe
such that forlE modes

We find the real part of the longitudinal impedance for both
small hole and a long slot in a beam vacuum chamber wit
circular cross section. The length of the slot can be arbitrar
large, the only requirement on the dimensions of the slots is th
its width be much smaller thatyw. Regular array olN slots
periodically distributed along the pipe is also considered.
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Existing theory for the impedance produced by small holes ?r?d orH modes

the wall of a vacuum chamber of the accelerator has been de- W (
n

)cos(ne)exp(oixn,mz), 3)

;T Lo
veloped in papers by Kurennoy [1] and Gluckstern [2]. They H™™ = b2 K _> cognd)expoixy m2),  (4)

n.m b
applied Bethe’s approach developed for study of diffraction of
an electromagnetic wave on a perfectly conducting plane scrédieredn is the Bessel functions of threh order,.unm !5 themth
with a small hole [3] to the problem of radiation of the beadﬁpot of Ju , upm is themth root of the derivativel;, knm =

propagating in a circular pipe having a hole in its W?II he/w2 — wE m/C Khm — /c @nm = Chn, m/b
method is based on utilization of small parametesig'b® and @hm = Cipm/b, andb is the radlus of the waveguide. The

amg/b®, whereay is the electric andmg is the magnetic polar- varlablea denotes the direction of the propagation of the wave;
izabilities of the hole, anU is the beam pipe radius. For C|rcular +1 corresponds to the waves propagating in the positive di-
holes,amg ~ laell ~ w®, wherew |s3the radius of the hole, andrec’uon along the-axes, and- = —1 marks the waves traveling
these ratios are of the order(o,ﬁ/b) . This theory also assumesin the opposite direction.

that the wavelength of the electromagnetic waves radiated by then the first order of the perturbation theory, the electromagnetic

hole is much larger than the dimensions of the hole. In the fiff|d scattered by the hole into the waveguide is characterized by
approximation of the perturbation theory, the impedance is gke amplitudes, m (o) such that

pressed in terms of polarizabilities) andamg and turns out to

be purely imaginary F=h@ Y Y ame =D F"™ 1,20 =1)
Z.i E,H nm
olw
et (@l +emg) - D h2 Y Y @ =-DF"™ (20 =—1), (5)
E,H nm

In many cases it is necessary to know the real part of th
impedance. In this paper we find Réor small holes and slots
of arbitrary length, assuming only that the width of the shot
is much smaller thah andc/w. We also find the impedance of
regular array oN slots. A more detailed study of relevant issue ]
including the effect of randomization of the slot positions in the (E) —

ehereh (2) is the step function anB denotes any of the compo-
nentsk;, E;, or Hy. The factorsa, m can be expressed in terms
of the electricxe; and magnetiey,g polarizabilities of the hole

4o (katmg + 0 knmtel)
array, can be found in Ref. [4]. M e minm (mn) (1+ 8n0)
for anE mode, and

(6)

II. REAL PART OF THE IMPEDANCE FOR A )
HOLE a,ﬁ“> 3 4nlg (OKn,mOlmg + Kae|) @

m = ch?«! M/Z —n3)J W, ’
To calculate the longitudinal impedance of a circular beam n’m( i ) n( m’n)
pipe with a hole, itis convenient to consider an oscillating curreftr anH mode. Calculating using Eqgs. (5) — (7) with the help
traveling with the velocity of light along the axis of the pipe, of the following relation,

o0

1 .
Z = A dz E (z,r =0) exp(—iwz/c) , (8)
0
*Work supported by the Department of Energy contract DE-AC03-76SF00515 —o0
LOur definitions ofve andamg agree with the Bethe’s paper [3]. They are two
times larger than those used by Kurennoy [1]. gives Eq. (2).

I (z,t) = lg exp(—iwt +ik2z), (2



The real part of the impedance of a hole arises in the secdndx > 1, andF (x) = 0 forx < 1.
order of the perturbation theory based on the smallness of thé&qgs. (13) and (15) apply also for short slots such that b
parametersszmg/b3 andae|/b3. It turns out, however, that we andlx < 1. For a large aspect ratib,»> w , we haveuyg ~
can find the real part of the impedance without going to higherel, and F® (x) = F™ (x). In this case, the plot of the
orders if use is made of the following relation between th& ReRe(Z® + Z") measured in units3,,Zo /7 b° as a function of

and the energy radiated per unit time by the hole : wb/cis shown in Fig. 1.
1
P=3 I2ReZ (v) . (9) 1600 |

The energy fluxP in Eq. (9) should include all the waves
radiated by the hole, both inside and outside of the waveguidg? 1200 — —
The outside radiation will depend on the geometry and locations
of the conducting surfaces in that region and cannot be compute
without knowing particular details of the specific design. HereN 800 —
we neglect its contribution, assuming that the thickness of thes
pipe wall is large enough so that the electromagnetic field do@
not penetrate through the hole. 400

Inside the waveguide, we have to take into account the radia- =
tion going into allE andH modes. The energy flow in the mode I

of unit amplitude is equal to % 5
148 10-94 wb/c 7828A1
(E) _ =T 9n 2 2

Pam = 16 nmHnm I (nm) - (10) Figure. 1. Real part of the impedance of a short large-aspect-
q ratio slot as a function of the frequency (solid curve), and a high-

an frequency approximation given by Eq. (17) (dotted curve).

1+ 6no ,
Py = 16n oy m (1em = 1) 35 (knm) » (A1) Because the functions® (x) and F™™ (x) go to infinity

whenx — 1, ReZ has singularities at the cutoff frequencies
respectively. The energy flux in each mode radiated by the halg ., and whm- Formally, this happens because the amplitude
is given by |a,m (0 = l)\2 Pom and|agm (o = —l)|2 Pom in  of the radiated waves given by Egs. (6) and (7) scales,as
the forward and backward directions, respectively. It is evidewhenw approaches a cutoff frequency. The actual height of the
that this radiation occurs only if the frequensys larger that the cutoff peaks will be determined by higher order corrections of
cutoff frequencywn m (or oy, ). the theory and finite conductivity of the walls.
The total energy fluP is Inthe limitw > c/b, alarge number of harmonics is involved
in the sums (13) and (15). By considering them to be continu-
P =22 ) Punlan

2 , (12) ous variables, it is possible to integrate omeandm instead of

E,H nm o=+1 summing. This integration yields
where the summation is carried out over both directions of prop- 2 wta? 9
agation,c = +1, all possible values af andm, and also over ReZ = % Zo T 17)

E andH modes. Combining Egs. (9)—(12) yields the following

equation for the contribution & andH modes into the real part This function is also plotted in Fig. 1; it give a good approxi-

of the impedance: mation of the averaged dependence of th& Reven for small
frequencies.

Rez® — 20 ! _re ( ) (13)
m et L= (14 5n0) onm/’ [ll. REAL PART OF THE IMPEDANCE FOR A
LONG SLOT
where , . .
a2 X2 +ad (x2 - 1) Tofind the real partofthe impedance 0fa|or_1g slotfor whish
FE®x) =2 > (14) comparable or larger tharand/ork —1, we consider the long slot
XvVx2—1 as adistributed system of magnetic and electric dipoles. The field
for x > 1, andF® (x) = 0 for x < 1. For theH modes radiated by the slot consists of the waves coming from different
elements of the slots with a relative phase advance between them.
Rez(H) — éw_z n2 E() (L) (15) For two infinitesimal elements located at distac¢he phase

m 2ot = 2 —n2 nm/ advance is composed of two parts. The first part is due to the

change of phase of the driving field of the beam, and is equal to

where xz. The second part is caused by the relative phase shift of the
FH (x) = “glxz +0‘§19(X2 - 1) (16) two radiated waves, and is equal @ knmz, whereo = +1

- XVX2 — 1 for the forward and backward propagating waves. The total




phase exponent, edpz — i oknmz) should be integrated over Sir? [szlgn.m (x _Jx2 -1 1)]

the length of the slot, yielding the factor x (X —+v/%x2 -1 +
( >] sir? [d’;% (x— x2—1>]
|
fom(0) = %/exp(i (¢ —oknm)2) dz = sin? I:lﬂzr;:,)m (x + /X2 = 1)] sir? [% (x + /X2 = 1)]
0 sir? [ %2 (x + VX = 1)
— = _[exp(i(k — okpm)l) — 1 (18)
il (K — oknm) [exe( ) =] For theH modes, the functiof " (x) containsu, , instead of

for the E modes and a similar factdf, ., (o), for whichxy m — Hom:

. 2. .
k) m in Eq. (18), for theH modes. These factors multiply the The maximum value ofgnm|” in Eq. (20) is equal t? and

amplitudesa,ﬁﬁ% anda,ﬁf'rg inEgs. (6)and (7). Combining allthese'S attained when the following condition holds

changes, and taking into account that for a long sigt= —amg,

results in the following modifications of the functiof$® and d (K Bl UKn’m) = 2a7, (21)
F(in Egs. (13) and (15): whereq is an integer. For largl, Eq. (20) represents narrow
ob? ) 1 | peaks with a width at half heighhw/w ~ 1/(2qN) at the
FE (x) = —— (@) - - {sin2 [ Hn.m resonant frequencies. This implies that Qefactor for these
am s S xdx2—1 2b resonances can be estimated@s’ qN.

2b satisfied by the cutoff frequeney, m (or wy, ,)). In this case, the
height of the resonant peaks will be strongly amplified because
andF ) given by the same expression wjth ,, substituted by of the superposition of the cutoff singularity for a single peak
iy o Inthe limitl > | — ok m| ", the effective length of the with a maximum of thégnm|” function.
slot that contributes to the real part of the impedance turns out tdn the limit of very largeN, N — oo, the width of the res-
be equal tdx — U’Cn,m|7la which means that R&(w) does not ©onances becomes so narrow that it will actually be determined

" (X_m)] 4 sir? |:|/Ln,m <X+ o 1)]}’ (19) If d/b = an/un,m (or d/b = an/,u;hm), Eq. (21) is

depend on in the limitl > «~* (butx 1 > w ). by the finite conductivity of the walls. The transition to this
regime occurs whe® becomes comparable n;’a, whereé is
IV. REGULAR ARRAY OF SLOTS the skin depth at the resonant frequency. Previously, this regime

has been studied in detail for an infinitely long periodic bellow

Cons.ider an array oN i.dentical slots distributed falong thejn Ref. [5], where the resonance conditions (21) have also been
beam pipe such that the distance between the slots is eqiial t9ound.

The system has a periad= | + d;. The electromagnetic field
scattered by the array is the sum of the fields of individual slots. In V. Acknowledgments
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N—1
Onm(0) = Z exp[idj (x — oknm)]
j=0
_ 1- exp[id N (K - UKn,m)]
o1- exp[id (K - mcn,m)] ’ (20)

The square of the absolute valuegfy (o), multiplies each sine
term in Eq. (19) modifying the functioR (® into the following
expression:

2
FE ) = 2 (m)zx ! l{sinz[m”’m

M%,m I X2 — 2b




