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Abstract field in the region close to the edges due to repeated trapping of

the field energy into the space between the diaphragms. We will

A ”.‘eth"d Is presented for cglcglatlng the hlgh—freqqenp Y lon%ﬁ]ow that this qualitative argument can be cast into a quantita-
tudinal and transverse coupling impedances in a periodic array.0

diaphragms in a circular perfectly conducting pipe. The meth e consideration using a rigorous solution to the diffraction of

is based on Weinstein's theory of diffraction of a plane eleﬁ_plane electromagnetic wave on an infinite stack of conducting

tromagnetic wave on a stack of halfplanes. Using Weinstein éilfplanes.

solution, itis shown that the problem of finding the beam field in
the pipe reduces to an effective boundary condition at the radius Il. BASIC ASSUMPTIONS

of the diaphragms which couples the longitudinal electric field Consider a relativistic beam with a factonofmuch larger than
with the azimuthal magnetic one. Solving Maxwell’s equationsnity, y > 1, propagating along the axis of a circular pipe with
with this boundary condition leads to simple formulae I,y  infinitely thin periodic diaphragms. The azimuthal magnetic
and Z;,. A good agreement with a numerical solution of théeld of such a beam is almost equal to its radial electric field, and

problem found by other authors is demonstrated. both propagate with the speedc. In that respect, excluding
the vicinity of the axis of the pipe occupied by the beam, the
. INTRODUCTION electromagnetic field can be considered as a free electromagnetic

_ _ ] ) wave propagating in the pipe. Accepting this point of view, we

Studies of the impedance at the frequencies much higher thang to apply to the beam field the results derived from the
the cutoff frequency have a long history with many theoretittraction of the wave on the edges of the diaphragms.

cal and numerical results obtained for different types of accel-1p¢ analysis of the diffraction is greatly simplified by the fact

erator structures (see e.g. a special issue of Particle Accelghi we are only interested in the high frequency band. From

ators journal devoted exclusively to this subject [1]). One @fresne| theory of diffraction, it is known that the area involved in

the major problems addressed by several authors is the higlks yiffraction extends from the edges by distance/g/K, and
frequency impedance of multiple cavities or a periodic system@écupies an annulus from~ a — dJ/g/K tor ~ a + d/g/K
diaphragms [2-5]. There is a general consensus that, fordarggynered has a value of the order of unity. As soondg/K is
the longitudinal impedance in this system scales asymptoticalfy,ch smaller than the radies we can neglect the cylindrical
asw ™2, Specifically, for a periodic array of thin diaphragmsyeometry of the problem and consider the diffraction in plane
in the limit @ — oo, the real part 0Zjong per one cell can be geometry. We will also assume thaig/k <« b — a, whereb
approximated by the following function: is the pipe radius; in this case the pipe wall does not interfere
~ 3 _3J2 with the diffraction process, and we can further simplify the
Re€Ziong (a))/Zo f(g/a) kg) ’ (1) problem eliminating the pipe walls and allowing the field to freely

wherek = w/c, Zo = 47 /¢ = 3772, g is the distance betweenPropagate in the radial direction to infinity [5].
the diaphragm openinga,is the radius of the diaphragms, and As a result of these approximations we essentially reduce the
f is a numerical factor. However, various authors find differeRfoblem to the diffraction of a plane electromagnetic wave on an
values for f which deviate almost by the order of magnitude'.nf'n'te periodic array of halfplanes the solution for which can
f = 7-Y2in Ref. [3], f = 87~Y2in Ref. [4], and according Pe found in Ref. [7].
to the Sessler - Weinstein model [2],= 0.677 /2.

Apart from differing numerical values fof, Eq. (1) itself ll. WEINSTEIN'S THEORY
gives a rather poor approximation in the region4(kg < 20 Thjs section briefly summarizes Weinstein’s results for the
typical for practical appllgatlor_ls in accelgrator physics. The reggraction ofa plane wave for an arbitrary incidence anglgo
sonfor EqQ. (1) to be relatively inaccurate is that the actualzpararg—measured from the vertical axiso that the grazing incidence
eter in asymptotic expansion (1) (sg)*? (or even(kg/n)l/ ) correspondstpo = 7 /2). Inour case, the beam field propagates
rather tharkg. This makes it necessary to seek better asymptot@srizontally which corresponds to the limit cpg — 0 in the
than the leading term represented by Eq. (1). Refs. [2-3] indegiffraction solution.
provide a more accurate expressions that reduce to Eq. (1) in thget the position ofnth halfplane be given by = mg, y < 0.
limit (kg)¥? > 1. Consider a plane wave propagating in the halfspace0 at an

In this paper an attempt is made to revise the approachagley, with the vertical axis (0< ¢ < n/2)and polarized so

the calculation of the impedance of the periodic system of dhat the only component of the magnetic field is directed along
aphragms using a more adequate physical description of thex-axis,

beam interaction with the diaphragms. On a qualitative level,
the physics involved has been outlined in Ref. [6]. Its two basic Hy = Aexplik (zsingp — y cosgp)] . (2)
elements are: a small angle diffraction of the beam field at the
edges of the diaphragms, and depletion of the amplitude of tHere and below we assume the time dependenegp(—iwt).



The solution to the diffraction problem for the incident wave Turning now to the physical interpretation of the solu-
(2) [7, Chapter 7] represents the fieldyat< 0 as a sum of tion, note that in the limit coggy — 0, both the inci-

eigenmodes propagating between the plates: dent wave given by Eq. (2) and the mirror reflected wave
ARyexp(ik (zsingg + y cosgp)) in Eq. (4) propagate paral-

_ iky TNZ iy lel to the horizontal axis. This observation prompts us to believe

Hhe= A (Toe + nZ; Tn COS € ) ’ (3) that their sum has to be identified with the electromagnetic field

of the beam at the edge of the diaphragms. Using Eq. (6) we

wherex, = /k2 _ (nn/g)z, Imk, > 0. Eq. (3)is valid for find for the magnetic component of this field:

0 < z < g; the field betweemmth and (m + 1)th plates has H, = Agkzsinvo (efikycos(po + Roeikycos%) ~
an additional factor expilkmgsingg) on the right hand side. s o iy cose
Complex values of, imply that the corresponding eigenmode A€ (—2i sin(ky cosgo) + 25 (kg) cospe!Y %) ~
is an evanescent one; it exponentially decays whes —oo. 2Acospoe*? (S(kg) — iky). (10)
The field in the upper halfspace,> 0, is given by
In order to obtain a nonzero result when ggs— 0, we have
to assume thaf goes to infinity so that 82cospy — E and

+A Z Rneik(zsinwﬁycoswn)’ (4) Hy = Eékz (S(kg) _ iky) , (11)

nN=—00

Hx — Aé k(zsingo—Y cosgg)

where E is a constant. We see that our soluti@guiresthe
magnetic field to be a linear function gf in other words, for
T / 2 the diffraction process imposes a certain constraint

where cog, = [1— (n+ qsin<po)2/q2]l/2, q = kg/2n; itis
assumed that Incosg,) > 0. The first term on the right side of

R L . 0 ,—
Eq. (4)is the incidentwave, ?”d.the sumrepresents thed'ﬁracg‘ﬂjthe behavior of the electromagnetic field near the edges of
waves generated by the periodic structure. One of these w diaphragms. This constraint can be expressed as a bound-

havingn = 0 is a mirror reflected image of the incident field; "ary condition aty = O if one notes that Maxwell's equation

hasr':he amplitu_dé\P]?. d be found i ¢ 0 HX/By = ik E; combined with Eq. (11) allows to one express
The expressions fof, and R, can be found in Ref. [7]. For E interms of the electric fieldE; = —E exp(ikz). Substituting

our purposes, we will only neeiy as a function ofj andgo, this relation in Eq. (11) yields

1—cosyo 4iq cogg) In2
, CO =——— ¢ ° X 1
RO (q S(pO) 1 + COS§00 EZ = —% HX|y:0 . (12)
0o ] 4 SO0 q 4 CoSgo | _ 2mq coSpg g
[]+on oo a2 5)  Eq (12 t i It. It relates the longitudinal
S0 ) _ GOS0 ;. Zrqoospp | g. (12) represents our main result. It relates the longitudina
n=1 COS¢n COSp-n Kng component of the electric field to the transverse component of
IV. BOUNDARY CONDITION the magnetic field at the diaphragms.

Note a close resemblance of Eq. (12) to the boundary con-
To consider the case of horizontal propagation of the wave Weion at a conducting wall in the case of high conductivity
need, first, to find the limit cagy — 0in Eq. (5). Using analysis E, = (i — 1) /o/870 Hxly—o, [8]. This allows us to assign the
of Ref. [7], after straightforward thOUgh cumbersome a'gebr@iaphragms an effective (Comp|ex) COﬂdUCti\ljﬁ(f, such that
one can show that in this limit, fdeg > 1,

Ro = —1+ 2S(kg) cosgo, (6)

where the complex functio8(q) is given by

Zroem_ (" Vskg. (13)

w

Using Eq. (13), for a given solution of an electromagnetic prob-
1 1—i) X lem in a smooth pipe with finite conductivity (), one can
S(X) = > [1—!— —\/; ((«/E - 1) F (2x) + a>i| . (7) find the solution of the corresponding problem in the pipe with
T periodic diaphragms by substitution— oeg.

where
. . V. IMPEDANCE
F(x) = f dt (exp(f _ ix) _ ) , (8) Having. fou.nd the boundary cond_ition (_12) we can now return
2 to the cylindrical geometry of the pipe with the beam and solve
- for the beam field in the region @ r < a. In polar coordinate
and system, thex-component of the magnetic fieldy should be
T2y t2/2 identified with the azimuthal componehty, so that Eq. (12)
a=-2[ 2 T Sdt=365  (9) takesthe form,
2 (e E oy 14
z = S(kg) 19|r=a ( )

The functionF (x) is a periodic function of its argument with
the period equal tos2. It has singularitiesx |x — 2msw |72 at With this boundary condition, a standard derivation (see, e.g.,
the pointsx = 2msw, wherem is an integer. [9]) of the longitudinal and transverse impedancgg,g andZ,,



Similar to longitudinal impedanceZ;, has sharp peaks at

ka = mm, however, it decays more rapidly thafiong (w).
Asymptotically, foro — oo,
0.02 — —
4Zo 22O
> L |
2 VI. DISCUSSION
¢ 0.01 — We compared our result with a numerical solution of a similar
© problem in Ref. [5], where a repeated structure of thin irises
= — has been studied. A close inspection of the plot oZRg in
this reference shows a very good agreement with our Fig. 1,
0 | | | including the positions and the heights of each peak even for
0 5 10 15 20 ka as small as 5. This agreement indicates that using a plane
AL ka geometry for solution of the diffraction problem turns out to be

Figure. 1. Real part of the longitudinal impedance.
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Figure. 2. Imaginary part of the longitudinal impedance.

yields :

Zo 1
2ras(kg -~ ika/2
_ Z 1
- wka® S(kg) — dika+i (ka) ™t

long =

Zy

Figures 1 and 2 show the real and imaginary partZgfy

a very accurate appoximation even for relatively small values of
ka.

In the limit of very large frequencies, our result agrees with
Eq. (1) with f = 0.26 which is below both Gluckstern’s result
(f = 0.56) and Sessler-Weinstein modél £ 0.37).
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for the case whem = g. In addition to general fall off of
Ziong With the frequency, it demonstrates peaks and jumps at
ka = mm, wheremis an integer. This behavior can be explained
as due to a strong coupling, through diffraction, of the beam field
with the modes between the diaphragms having a small radial
wavenumber. These modes have the frequency closenta;
they represent standing waves between two adjacent diaphragms.
In the limit of very high frequencyy — oo, the asymptotic
dependence ajong (@) is given by

27 Zo
ReZjgng ~ @Res (Kg), IMZjgng ~ ke (17)
Note that on the average Rgnq Scales asymptotically as /2
in agreement with Eq. (1).



