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Abstract

The decoherence behavior of a beam centroid motion after a kick
is studied using a two-particle model. A simple theory based on
averaging of the governing equation is developed. The effects
of a finite chromaticity and synchrotron motion are taken into
account. Increasing the tune spread in the beam, a transition
from a head-tail instability to a stable decay of an initial kick is
explicitly demonstrated.

I. INTRODUCTION
When a bunched beam is kicked in a storage ring, it executes a

betatron oscillation. If there is a spread in the betatron frequen-
cies of the beam particles, it is well-known [1-4] that the centroid
motion of the beam will decay in time as a result of decoherence
among the oscilations of different particles. The rate of decoher-
ence depends on the spread of the betatron frequencies.

In addition to this decoherence effect, the beam centroid mo-
tion after the kick is also affected by the collective effects if the
beam is sufficiently intense [4-6]. The interplay between the
decoherence and the collective effects was analyzed in Ref. 5,
except that it neglected the effect of the head-tail instability by
assuming a zero chromaticity. For a coasting beam, a similar
problem has been treated in Ref. 6. In this note, we offer a
bunched-beam analysis that includes the effect of a finite chro-
maticity using a simplified two-particle model of the beam. We
obtain the time behavior of the beam centroid after the kick as
a function of the frequency spread, the wake field strength, and
the chromaticity. The results reduce to those of Ref. 5 when the
chromaticity is set to zero. It is shown that by an appropriate
transformation, the formalism of Ref. 5 for the case with zero
chromaticity applies also to the case with finite chromaticity.

Our result demonstrates the transition from Landau-damped
oscillations to instability. In particular, it gives explicitly the
condition for the collective instability to be Landau damped.

II. GENERAL ANALYSIS
To study the interplay between the decoherence and the col-

lective head-tail effects, we consider a simplified two-particle
model in which the beam is modeled as two macroparticles in-
teracting with each other through a wake field according to

y′′
1,2 + ω2

1,2

c2
y1,2 = εh1,2ȳ2,1, (1)

wherey1 and y2 are the transverse offsets for the first and the
second macroparticles respectively, and the prime designates the
differentiation with respect to the longitudinal coordinates. The
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betatron frequenciesω1 andω2 in Eq. (1) for each particle are
modulated due to the synchrotron motion,

ω1,2 = ω
(
1 ∓ ξ δ̂ cos(ωss/c)

)
, (2)

whereω is the unperturbed betatron frequency andδ̂ = ẑωs
/

cη
with ξ designating the chromaticity parameter,ωs the syn-
chrotron frequency,η the momentum compaction factor andẑ
the amplitude of synchrotron oscillations. We assume the two
macroparticles execute their synchrotron oscillations according
to z1 = −z2 = ẑsin(ωss/c). On the right hand side of Eq. (1)
we haveε = Nr0W0

/
2γ C, whereN is the number of particles in

the bunch (each macroparticle containsN/2 particles);r0 is the
classical radius of the particle;W0 is the wake function atz = 0
(in case whenW(z = 0) = 0, W0 is some characteristic value of
W); γ is the relativistic factor; andC is the accelerator circum-
ference. The functionh1 (s) accounts for the time variation of
macroparticle positions: it is equal toW (2ẑ| sin(ωss/c) |)/W0

for z1 < z2, andh1 (s) = 0 for z1 > z2. The functionh2 (s) dif-
fers fromh1 (s) in thatz1 is interchanged withz2. Note thath1 (s)
(h2 (s)) is nonvanishing only when the first (second) macropar-
ticle trails the other macroparticle.

We assume a frequency spread within each macroparticle
which has a distributionρ (ω) normalized so that

∫
ρ (ω) dω =

1. The functionρ (ω) has a maximum atω = ω0 with a char-
acteristic width1ω0 ¿ ω0. The functionsy1 = y1 (s|ω) and
y2 = y2 (s|ω) in Eq. (1) are, as a matter of fact, functions of
two variables,s andω, and the bar designates averaging over
frequency,

ȳ1,2 (s) =
∫

y1,2 (s|ω) ρ (ω) dω. (3)

We will be looking for solution of Eq. (1) in the following
form [7]

y1,2 (s|ω) = ỹ1,2 (s|ω) exp(−i ω0s/c ± i χ sin(ωss/c)) , (4)

whereχ = ξ δ̂ω0
/
ωs is the head-tail phase, and̃y1,2 (s|ω) is a

slowly varying amplitude. Substituting Eq. (4) into Eq. (1) and
neglecting small terms we have

−2i
ω0

c
ỹ′

1,2 + ω2 − ω2
0

c2
ỹ1,2 = εh1,2ŷ2,1e(∓2i χ sin( ωss

c )), (5)

where

ŷ1,2 (s) =
∫

ỹ1,2 (s|ω) ρ (ω) dω. (6)

Assumingχ ¿ 1 we can expand the right hand side of Eq. (5)
and average it overs. Also, because the frequency spread is
assumed to be small, we haveω2 − ω2

0 ≈ 2ω01ω, where1ω =
ω − ω0. We than have

ỹ′
1,2 + i

1ω

c
ỹ1,2 = ic

2ω0
ε (α1 + 2i α2χ) ŷ2,1, (7)



             
where

α1 = ωs

2πW0c

∫ cπ/ωs

0
W

(
2ẑsin

(ωss

c

))
ds, (8)

α2 = ωs

2πW0c

∫ cπ/ωs

0
W

(
2ẑsin

(ωss

c

))
sin

(ωss

c

)
ds. (9)

For a constant wake,W (z) ≡ W0, we haveα1 = 1/2,α2 = 1
/
π .

It is convenient to define the center of massY and the relative
displacementD of the macroparticles so that

Y = 1

2
(ỹ1 + ỹ2) , D = ỹ1 − ỹ2. (10)

This reduces Eq. (7) to a pair of decoupled equations,

Y′ + i
1ω

c
Y = r Ŷ, D′ + i

1ω

c
D = −r D̂ , (11)

where {
Ŷ (s)
D̂ (s)

}
=

∫ {
Y (s|1ω)

D (s|1ω)

}
ρ (1ω) d1ω, (12)

andr = icε (α1 + 2i α2χ) /2ω0.
At this point, we note that averaging Eq. (5) actually assumes

that the functionŝy1,2 vary on the time scale that is larger than
the synchrotron period. From Eq. (11) we find that, due to the
wake field,Y andD will be modulated with the frequency equal
to cImr . Hence, we have to requirec2εα1/2ω0 ¿ ωs, as an
applicability condition of our approach. It is worth noting that
the ratioπc2εα1/2ω0ωs is equal to the parameterϒ defined in
[7], p. 180 (for a constant wake), that governs the strong head-
tail instability. The above condition therefore implies that we are
well below the threshhold of the strong head-tail instability.

We will first focus on the behavior of the centroid of the bunch
and consider the first of Eq. (11). The analysis follows closely
that of Ref. 5. Integrating the equation forY we find,

Y = Y0e−i 1ωs/c + r
∫ s

0
Ŷ

(
s′)e−i 1ω(s−s′)/cds′, (13)

whereY0 is a constant equal to the initial value ofY at s = 0.
Averaging Eq. (13) according to Eq. (12) yields

Ŷ = Y0K (s) + r
∫ s

0
Ŷ

(
s′)K

(
s − s′) ds′, (14)

whereK (s) is thedecoherence function

K (s) =
∫

e−i 1ωs/cρ (1ω) d1ω. (15)

Eq. (14) can now be solved by means of a Laplace transform.
Defining

u (p) =
∫ ∞

0
Ŷ (s) e−psds, κ (p) =

∫ ∞

0
K (s) e−psds,

(16)
the Laplace transform of Eq. (14) is

u (p) = Y0κ (p) + r κ (p) u (p) , (17)

from which we findu (p), and making inverse Laplace transform
yields

Ŷ (s) = 1

2π i
Y0

∫ σ+i ∞

σ−i ∞

κ (p)

1 − r κ (p)
epsdp. (18)

Since Eq. (11) forD differs only by the sign ofr , all our results
for Y are also applicable toD upon the substitutionr → −r .

III. DISTRIBUTION FUNCTIONS AND
INSTABILITY

We have thus solved formally the motion of the beam centroid
after a kick. The amplitude of the beam centroid motion is de-
scribed byŶ(s) of Eq. (18) whereY0 is the initial kick amplitude.
The parameterr contains the wake field and the chromaticity in-
formation. The functionκ(p), given by Eqs. (15) and (16), con-
tains the information of the betatron frequency spectrum of the
beam. To proceed, we assume a Gaussian distribution function,

ρ (ω) = 1√
2π1ω0

exp

(
− 1ω2

21ω2
0

)
, (19)

where1ω0 is the rms width of the spectrum. Then

K (s) = exp
(−1ω2

0s2
/

2c2
)
, (20)

and

κ (p) = c
√

π√
21ω0

exp

(
p2c2

21ω2
0

) [
1 − erf

(
pc√
21ω

)]
, (21)

where erf(x) is the error function. Defining the
variable ζ = i pc

/
1ω0 and the function w (ζ ) =

−i exp
(−ζ 2/2

) [
1 − erf

(
−i ζ/

√
2
)]

, we can rewrite Eq. (18)

in the following form

Ŷ (s) = 1ω0

2πrc
Y0

∫
C

w (ζ ) exp(−i 1ω0ζs/c) dζ

w (ζ ) + i
√

21ω0

/
rc

√
π

, (22)

where the integration goes along a straight horizontal line in the
upper half plane of the complex variableζ , above the singularities
of the integrand. The functionw (ζ ) is an analytic function in
the upper half plane of the complex variableζ . To perform the
integration we can shift the integration path down to the real
axis ofζ . However, if the denominator in Eq. (22) has a root in
the upper half plane,ζ = ζ0, the integration path will have to
encircle the corresponding pole, and the residue from the pole
will give a contribution toŶ (s) with the time dependence∝
exp(−i 1ω0ζ0s/c). This implies an instability with the growth
rate equal to1ω0Imζ0.

We can easily find the root of the denominator in Eq. (22) and
obtain the condition for the stability assuming

∣∣1ω0
/

r
∣∣ ¿ 1. In

this limit, a solution to the equationw (ζ ) = −i
√

21ω0

/
rc

√
π

is [5]

ζ = − εα1c2

2ω01ω0
− i εχα2c2

ω01ω0
− i

√
πε2α2

1c4

√
2ω2

01ω2
0

exp

(
− ε2α2

1c4

2ω2
01ω2

0

)
.

(23)



            
For small1ω0, the last term is exponentially small, and we
can neglect it. The result will be a head-tail instability in the
system of two macroparticles forχ < 0 with the growth rate
γinst = εα2c2 |χ |/ω0. The last term in Eq. (23) accounts for
the Landau damping effect. It overcomes the second term and
suppresses the instability if

|χ | α2 <

√
πεα2

1c2

√
2ω01ω0

exp

(
− ε2α2

1c4

2ω2
01ω2

0

)
. (24)

Eq. (22) has been integrated numerically in Ref. [5] for both
stable and unstable regimes. The relevant plots can be found in
that paper.

We will also consider the case when the tune spread is associ-
ated with the lattice nonlinearity so that the tune isν = ν0−µa2,
wherea is the ratio of the amplitude of the betatron oscillations
to the rms width of the beam, andµ is a nonlinearity parameter.
In this case, for a small amplitude oscillations of the centroid,
the decoherence function has a form [1]:

K (s) = 1

(1 − is1ω0/c)2
, (25)

where1ω0 = 2µωrev, andωrev is the revolution frequency. The
Laplace transform of Eq. (25) yields

κ (p) = ic

1ω0
exp

(
i pc

1ω0

)
E2

(
i pc

1ω0

)
, (26)

whereE2 (x) is the exponential integral function [8]. Using the
variableζ we can rewrite Eq. (18) in the following form

Ŷ (s) = 1ω0

2πrc

∫
C

dζ
exp(ζ − i 1ω0sζ/c) E2 (ζ )

i 1ω0
/

rc − exp(ζ ) E2 (ζ )
. (27)

This equation is similar to Eq. (22) in that it exhibits stabilization
effect for sufficiently large1ω0 due to Landau damping. We
will demonstrate this in the next section for a particular example
considered in Ref.4.

IV. DECOHERENCE EFFECTS
As an example, we assume one set of parameters considered

in Ref. 4: N = 3 × 1010, σz = 6 mm,νβ = 8.18, βx = 3 m,
γ = 2350, and a linear wake function,W(z) = W0z, with W0 =
2 × 107 m−3. The amplitude of the synchrotron oscillationẑ is
assumed to bêz = √

2σz, and the betatron frequencyωβ = c/βx.
This gives for the factorr , r = 3.0 × 10−5(0.64i + 0.08ξ).
The parameter1ω0 can be expressed in terms ofµ, 1ω0/c =
8.14× 10−2µ m−1.

The amplitude|Ŷ(s)| of the beam calculated with the use of
Eq. (27) is plotted in Fig. 1 for various values ofµ for the
unstable caseξ = −1. The critical value forµ that stabilizes the
head-tail instability is 2.2 × 10−4.

Figure 1 shows also a stable case,ξ = 1. In this case, increas-
ing µ causes a faster decay of the initial kick.

As mentioned in Sec. II, the time behavior ofD̂(s) is governed
by the same equations asŶ(s) with r substituted by−r . That
means thatξ = −1 correspondes to stable oscillations ofD̂(s),
and ξ = 1 leads to the head-tail instability in the absence of
the tune spread. Calculations show that for the parameters listed
above, Landau damping stabilizes the instability ofD̂(s) when
µ > 6 × 10−5.
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Figure. 1. Plot of|Ŷ(s)| for ξ = −1 (solid curves1-4) and for
ξ = 1 (dashed curves5and6). The values of theµ are:1and5–
µ = 5.3× 10−5, 2 – µ = 1.6× 10−4, 3 and6 – µ = 2.7× 10−4,
4 – µ = 3.7 × 10−4.
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