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Abstract betatron frequencies; andw, in Eq. (1) for each particle are

The decoherence behavior of a beam centroid motion after a kllrrégdulated due to the synchrotron motion,

is studied using a two-particle model. A simple theory based on W, = (1 FES cos(wss/c)) , (2)
averaging of the governing equation is developed. The effects ) .

of a finite chromaticity and synchrotron motion are taken inisherew is the unperturbed betatron frequency and Zws /Cn
account. Increasing the tune spread in the beam, a transitjif! § designating the chromaticity parametess the syn-

from a head-tail instability to a stable decay of an initial kick i§hrotron frequencyy the momentum compaction factor aad
explicitly demonstrated. the amplitude of synchrotron oscillations. We assume the two

macroparticles execute their synchrotron oscillations according
tozy = —z, = zZsin(wss/c). On the right hand side of Eq. (1)
l. INTRODUCTION we haves = NrOWO/ZyC, whereN is the number of particles in
When a bunched beam is kicked in a storage ring, it executd$§i@ bunch (each macroparticle contaMg2 particles)ro is the
betatron oscillation. If there is a spread in the betatron frequetiassical radius of the particlgy, is the wake function at = 0
cies of the beam particles, it is well-known [1-4] that the centroi@h case wheW (z = 0) = 0, Wp is some characteristic value of
motion of the beam will decay in time as a result of decoheren¥é); y is the relativistic factor; an@ is the accelerator circum-
among the oscilations of different particles. The rate of decohé&¥ence. The functioh; (s) accounts for the time variation of
ence depends on the spread of the betatron frequencies.  macroparticle positions: it is equal W (22 sin(wss/c) |)/ Wo
In addition to this decoherence effect, the beam centroid nfe¥ z; < 2, andh; (s) = 0 forz; > z,. The functionh; (s) dif-
tion after the kick is also affected by the collective effects if thigrs fromhy (s) inthatz; is interchanged wit,. Note thah; (s)
beam is sufficiently intense [4-6]. The interplay between tH82 (S)) is nonvanishing only when the first (second) macropar-
decoherence and the collective effects was analyzed in Reftigle trails the other macroparticle.
except that it neglected the effect of the head-tail instability by We assume a frequency spread within each macroparticle
assuming a zero chromaticity. For a coasting beam, a simifdiich has a distributiop (w) normalized so thaf p (w) dw =
problem has been treated in Ref. 6. In this note, we offerla The functionp (») has a maximum ab = wo with a char-
bunched-beam analysis that includes the effect of a finite chasteristic widthAwy <« wo. The functionsy; = yi (s|w) and
maticity using a simplified two-particle model of the beam. W2 = Y2 (S|w) in Eq. (1) are, as a matter of fact, functions of
obtain the time behavior of the beam centroid after the kick &0 variabless andw, and the bar designates averaging over
a function of the frequency spread, the wake field strength, &igquency,
the chromaticity. The results reduce to those of Ref. 5 when the _
chromaticity is set to zero. It is shown that by an appropriate Y12(8) = / Y12 (Slw) p (0) do. )
transformation, the formalism of Ref. 5 for the case with zero
chromaticity applies also to the case with finite chromaticity. ~ We Will be looking for solution of Eq. (1) in the following
Our result demonstrates the transition from Landau-damp@im [7]
oscillations to instability. In particular, it gives explicitly the % i L
condition for the collective instability to be Landau damped. Yuz(sle) _Ayl'z (ko) exp(—los/c £ x sin(@ss/0)., (4)
wherey = $8a)o/a)3 is the head-tail phase, arfd (s|w) is a
II. GENERAL ANALYSIS slowly varying amplitude. Substituting Eq. (4) into Eq. (1) and

To study the interplay between the decoherence and the Crbqglectlng small terms we have

lective head-tail effects, we consider a simplified two-particle o w? — 3 i sin( @ss

’ _% 2y - Oy _ O F2x sin( <
model in which the beam is modeled as two macroparticles in- 2 c 12 + 2 2= ehy.292 16 ). )
teracting with each other through a wake field according to

where

. @i — Y12(5) = / Y1.2 (Slw) p (w) do. (6)
Yiot+ —5 Y12 =¢ehi2Ya1, (1) _ . .
¢ Assumingy <« 1 we can expand the right hand side of Eq. (5)

wherey; andy, are the transverse offsets for the first and thend average it oves. Also, because the frequency spread is
second macroparticles respectively, and the prime designatesaésumed to be small, we hawé — wg ~ 2woAw, whereAw =
differentiation with respect to the longitudinal coordinatdhe  — wg. We than have

- Aw ic ) .
Yio T Tyl.Z = —¢(a1+ 2azy) Y21, (7)
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where from which we findu (p), and making inverse Laplace transform
o/ yields
Ws / T ®s . . [WsS
a1 = W (2Zsin(— ) ) ds, (8) otioo
27TWOC 0 ( ( C )) ? (S) _ iYO‘/‘ +1 &epsd o (18)
o/ 27i o—ico L—Trx(P)
ws s n . [@sS . [ WsS
%2 = ZHWoC./o w <ZZSIH(T)) S'”(T) ds. () sinceEq. (11)fob differs only by the sign of, all our results
for Y are also applicable tB upon the substitution — —r.

ForaconstantwakaVy (z) = Wo, we haver; = 1/2,a, = 1/7.

It is convenient to define the center of m&sand the relative 1. DISTRIBUTION FUNCTIONS AND
displacemenD of the macroparticles so that INSTABILITY
1. - o We have thus solved formally the motion of the beam centroid
Y== , D=%—¥. 10 . . : A
2 1+ 72) =y (10) after a kick. The amplitude of the beam centroid motion is de-

scribed byY (s) of Eq. (18) wheréY is the initial kick amplitude.

The parametar contains the wake field and the chromaticity in-
formation. The functior (p), given by Eqgs. (15) and (16), con-
tains the information of the betatron frequency spectrum of the
beam. To proceed, we assume a Gaussian distribution function,

This reduces Eq. (7) to a pair of decoupled equations,
A ~ A ~
Y/+i?wY=rY, D’—|—iTwD — D, (11
where
Y (9 Y (slAw) (@) . exp( Ao? ) (19)
4 — @ plw) = —m=" Toa2 )’
{ B (s) } - / { D (sl Aw) }p (Aordae, — (12) var Ao 24
andr = ice (a1 + 2iaay) /200, whereAuwy is the rms width of the spectrum. Then
At this point, we note that averaging Eq. (5) actually assumes K (S) — exp(—Aw2s? /2c2 20
that the functiongy, » vary on the time scale that is larger than © p( “o / ) (20)
the synchrotron period. From Eq. (11) we find that, due to thgqg
wake field,Y and D will be modulated with the frequency equal -
to clmr. Hence, we have to requi®cas /2wy < ws, as an _oym pc pc
L o ) ) Kk (p) = exp| s —— ) [1—-erfl—=— )| (21)
applicability condition of our approach. It is worth noting that V2Awq 2Awf V2Aw
the ration c?sa1 /2wows is equal to the parametéf defined in _ . o
[7], p. 180 (for a constant wake), that governs the strong hed¥ere erix) is the error function. ~  Defining the
tail instability. The above condition therefore implies that we aM@riable ¢ = ipc/Awo and the functionw (5) =
well below the threshhold of the strong head-tail instability. —j exp(—¢/2) [1— erf(~i¢/+/2) ], we can rewrite Eq. (18)
We will first focus on the behavior of the centroid of the buncf, e following form

and consider the first of Eq. (11). The analysis follows closely
that of Ref. 5. Integrating the equation férwe find, - Awg v / w (¢) exp(—i Awpls/c) d¢
C

w(¢) +iﬁAwo/rcﬁ

. (22)

. S ~ H /
Y = Yoe A0S/ -y / Y (s)eaelsedy,  (13)
0 where the integration goes along a straight horizontal line in the

whereY; is a constant equal to the initial value ¥fats = 0. upper half plane of the complex varialgleabove the singularities

Averaging Eq. (13) according to Eq. (12) yields of the integrand. The functiom (¢) is an analytic function in
s the upper half plane of the complex varialgle To perform the

Y = YoK (s) + r/ v (s’)K (s— s’) ds, (14) integration we can shift the integration path down to the real

0 axis of¢. However, if the denominator in Eq. (22) has a root in

the upper half plane; = ¢o, the integration path will have to
encircle the corresponding pole, and the residue from the pole
. will give a contribution toY (s) with the time dependence
K(s) = /ef'AwS/cp (Aw)dAw. (15)  exp(—i Awotos/c). This implies an instability with the growth
rate equal taA wglmgo.
Eq. (14) can now be solved by means of a Laplace transformWe can easily find the root of the denominator in Eq. (22) and
Defining obtain the condition for the stability assumif@ywo /| <« 1. In

o o0 this limit, a solution to the equatian (¢) = —iﬁAwO/rcﬁ
u(p) =/ Y(se Pds, «(p) =/ K (s) e Pds, is [5]
0 0 (16)
; ; 2 2
the Laplace transform of Eq. (14) is —_ sonc® _ iexoC® iymetagc! (_ e?aict ) '
2woAwg woAwg ﬁwg Aa)g 2(0% Aa)g
u(p) = Yox (P) +re (P)u(p), 17) (23)

whereK (s) is thedecoherence function




For small Awg, the last term is exponentially small, and we
can neglect it. The result will be a head-tail instability in the
system of two macroparticles for < 0 with the growth rate

Yinst = €02C%|x|/wo. The last term in Eq. (23) accounts for

the Landau damping effect. It overcomes the second term ahd

suppresses the instability if

Jrealc? exp( )
ﬁwkoo .

Eqg. (22) has been integrated numerically in Ref. [5] for both

£2a2ct
T 5 2A,2
205 Awf

Ixle2 < (24)

stable and unstable regimes. The relevant plots can be found in

that paper.

We will also consider the case when the tune spread is associ-

ated with the lattice nonlinearity so that the tune is vy — ua?,
wherea is the ratio of the amplitude of the betatron oscillations

to the rms width of the beam, andis a nonlinearity parameter. Figure.

0

0

1. PlotofY(s)| for & = —1 (solid curvesl-4) and for

In this case, for a small amplitude oscillations of the centroif,= 1 (dashed curvesand6). The values of the are:1and5—

the decoherence function has a form [1]:

1
(1—isAwg/C)?’

whereAwy = 2uwre,, andwye, IS the revolution frequency. The
Laplace transform of Eq. (25) yields
ipc

ipC>E2<AwO> o

Aa)o
whereE; (x) is the exponential integral function [8]. Using the
variable¢ we can rewrite Eqg. (18) in the following form [3]

[ 0SB~ bt 0 B0 o
c iAwo/rc—exp()Ea ()

This equation is similar to Eq. (22) in that it exhibits stabilizatioff]
effect for sufficiently largeAwg due to Landau damping. We
will demonstrate this in the next section for a particular examplé]
considered in Ref.4.

IV. DECOHERENCE EFFECTS (8]

As an example, we assume one set of parameters considere
in Ref. 4: N = 3 x 10'% 0, = 6 mm,vs = 8.18, 8« = 3 m,

y = 2350, and a linear wake function/(z) = Wyz, with Wy =
2 x 10’ m~3. The amplitude of the synchrotron oscillatiris
assumed to b= /20, and the betatron frequeney = c/Bx.
This gives for the factor, r = 3.0 x 107°(0.64i + 0.08¢).
The parameteAwg can be expressed in terms @f Awg/C =
8.14x 102y m™L,

The amplitudei\?(s)| of the beam calculated with the use of
Eq. (27) is plotted in Fig. 1 for various values pffor the
unstable casg = —1. The critical value fou that stabilizes the
head-tail instability is 2 x 1074,

Figure 1 shows also a stable cases 1. In this case, increas-
ing u causes a faster decay of the initial kick.

As mentionedin Sec. Il, the time behaviorafs) is governed
by the same equations ¥<s) with r substituted by-r. That
means that = —1 correspondes to stable oscillationsixfs),
andé = 1 leads to the head-tail instability in the absence of

K (s) = (25)

[1]

: (26)

()—i—cex
Kp_Aa)o p

Awg
2nrc

Y (s) = (27)

uw= 5.3><1(TS,2—/1 =16x 1(?4,3and6—u =27x10%,
4—

w=37x10"%
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