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Luminosity in the Cornell Electron Storage Ring
(CESR) depends critically on the degree of overlap of the
counter-rotating beams at the interaction point (IP).
However, due to the pretzel†, this overlap is sensitive to
changes in quadrupole and sextupole strengths. The beam-
beam interaction (BBI) perturbs the closed orbits and depends
on the transverse distance between the opposing beams as
they pass each other. If a real time measurement of this
small orbit change were possible, then this effect could be
used to determine whether the bunches remain in collision
while tuning CESR for high luminosity. Our purpose was
to determine whether this would be possible with the present
beam position detector system.

I. THE BEAM-BEAM INTERACTION FOR
FLAT BEAMS

The vertical kick felt by a test particle due to the
transverse electric field of a two-dimensional Gaussian charge
distribution is given by the equation below. Complete
derivations are available in the references [1], [2], [3], and
[4].
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where A , d , µ , ν , and ρ  are
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N  is the number of particles in the distribution, σ x  and σy
are the transverse sizes of the distribution, and x  and y .are
the horizontal and vertical distances of the test particle from
the center of the Gaussian charge distribution. w z( )  is the
complex error function defined by the following equation.

w z( ) = exp −z2 1 +
2i
π exp u2( )du
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§ Work supported by funding from the National Science
Foundation.

† The pretzel in CESR is a closed orbit with kinks in
the horizontal plane in order to insure that counter-rotating
beams of electrons and positrons remain separated at parasitic
crossing points. Thus, the beams are off axis horizontally
through most of the magnets.

The complex error function must be evaluated
numerically, and we have used a computer program [5] to do
so based on the routines developed in reference [1]. Figure 1
shows the vertical beam-beam kick as a function vertical
displacement for a beam aspect ratio of σy σ x = 1 10 .

For fitting measured data to the theory a simpler
expression for the kick would be convenient. We can expand
the error function and the exponential in equation (1) about
the origin and keep as many terms as necessary to obtain
good agreement with equation (1). For small vertical
displacements and assuming that the horizontal displacement
is zero, the linear approximation of equation (1) is

∆ ′y = − 2Nre

γ σx + σy( )σy
y (4)

To 3rd order the approximation is
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where A , d , ρ , µ , and ν are the same as in equation (2).
Equation (4) and the first term of equation (5) are the same
for µ = 0. These approximations are also plotted in figure 1.
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Figure 1:  The vertical beam-beam kick from a flat,
Gaussian electron beam as a function of vertical distance
from the center of the beam.

As is discussed in the references [2], [6], and [7], if the
current of one bunch is significantly smaller than that of the
other bunch (the weak-strong approximation), the strong
beam remains undisturbed by the presence of the weak beam.
while the weak beam can be considered a group of non-
interacting particles. The disturbed orbit of the weak beam
can then be obtained by substituting the kick from equation
(1) in the usual formula for a closed orbit distortion (using
the N , σ x , and σy  of the strong beam).



The above equations apply for the weak-strong case, i.e.
one beam has a much smaller current than the other so that
its orbit is perturbed, but the strong beam is essentially
unperturbed. This is a special case; normally when tuning
luminosity in CESR, the bunches have nearly equal currents,
so the beams feel kicks of approximately equal strengths, and
both beams’ orbits and transverse sizes are affected. This will
complicate any attempt to measure the closed orbit distortion
due to the beam-beam interaction as a function of the overlap
at the IP during luminosity conditions and fit that
measurement to the theory. In fact, the strong-strong case is
usually approached via simulations. However, the qualitative
features of the orbit distortion due to the beam-beam
interaction in the strong-strong case are the same as in the
weak-strong case, i.e. as the displacement between the beams
increases, the effect of the beam-beam force increases to a
maximum then decreases.

II. MEASURING THE EFFECT OF THE BEAM-
BEAM INTERACTION ON CLOSED ORBITS

The measurement of the orbit distortion due to the
beam-beam interaction was performed in a lattice which had a
vertical tune of Qy  = 9.6298 and a vertical beta-function at
the IP of βy

* = 0.0172 meters. Normally, CESR operates
with nine bunches each of electrons and positrons, but for
these experiments we filled two positron bunches and one
electron bunch; the positron bunches will hereafter be referred
to as the colliding and reference bunches. We then brought
the beams into collision and measured the difference between
the orbits of the positron bunches at 10 different detectors
around CESR. Table 1 shows the beam parameters during
these measurements. The BBI’s at parasitic crossing points
were negligible, so the only difference between the orbits of
the two positron beams should be due to the BBI at the IP.

Table 1:  Beam parameters during the experiments.‡

Data set I1- I1+ I5+ σe- σe+
#1 7.18 7.33 7.59 15.4 11.7
#2a 6.84 7.51 7.73 14.3 9.7
#2b 6.30 3.40 5.64 7.4 9.8

Since the size of the orbit distortion is different at
each detector, we should not average the measured orbit
differences directly. Doing so would weight the data from
each detector by the beta-function at that detector. Instead we
will use Equation (6) to normalize the measured orbit
distortion at each detector to βy

*, then average them. The
three sets of normalized, averaged data are plotted in
Figures 2,3, and 4.

‡ The current, I, is in mA, and the vertical beam size, σ,
is in µm. The subscripts refer to the bunch number and
species. The currents are averages over the measurements.
The beam sizes are also averages over the measurements, and
for the positrons, an average of the two bunches as well.

∆y IP( ) = ∆y arc( )
βy

*

βy
arc (6)
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Figure 2: Data set #2b (unequal bunch currents).
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Figure 3: Data set #2a (equal bunch currents).
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Figure 4: Data set #1 (equal bunch currents).

To vary the vertical separation at the IP we used two
electrostatic separators located on the opposite side of the
ring from the IP. Ideally, the vertical betatron phase between
these separators is π creating a closed vertical bump at the
parasitic crossing point opposite the IP and no vertical
separation at the IP; however, coupling plus the presence of
the pretzel† may create a vertical separation at the IP even if
the bump is closed. Changing the phase advance uncloses the



bump creating a vertical ripple which changes the vertical
separation at the IP. A “knob” in the control room controls a
combination of quadrupoles such that we can change the
phase advance between these separators without disturbing
the rest of the machine. Before attempting to measure the
effect of the BBI, we measured the change in the orbit at
several points as we varied the phase advance, and calculate
the corresponding change in the displacement of the orbit at
the IP. To measure the effect of the BBI, we varied the
vertical separation at the IP over 35 µm or about 4σy .

III. DATA ANALYSIS

To find the phase advance which corresponded to
ysep = 0 , we used the fact that ysep = 0  occurs at the
inflection point of Equations (1) and (5). Using data set #2b,
we fit a cubic polynomial to the data versus
−σy < ysep < σy  with an  arbitrary zero then found the
inflection point of that fit. This point was set to ysep = 0 .
When data sets #2a and #1 were treated in the same way,
their inflection points corresponded to the same setting for
the phase advance within the errors of the fit. The
coefficients of the fit were scaled accordingly, and are listed
in Table 2. The slope of the fitted line and m1 of the fitted
polynomial agree with each other within the limit of the
errors of the fits in all cases. As a further check, we
compared the ratio m1/m3 of the polynomial fit to that
predicted by equation (5); they agreed within the limits of
error.

Table 2:  Coefficients of the fits shown in figures (2)-(4).
Data Fit to a line Fit to a cubic polynomial
set m1 (x 10-3) m1 (x 10-3) m3 (x 10-5)

#1 -(1.54±0.17) -(1.70±0.19) 3.5±1.4
#2a -(1.60±0.10) -(1.88±0.17) 5.0±1.5
#2b -(2.21±0.17) -(2.18±0.10) 7.6±1.5
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Figure 5: Vertical positions of the colliding and
reference positron bunches at one detector from data
set #2b.

Our results suggest that in theory this method could be
used to determine whether the beams are in collision,
however, these measurements were not done under normal

luminosity conditions. Under normal conditions there would
not be an extra, non-colliding beam available to use as a
reference, and having such an extra bunch during high energy
physics runs is undesirable. Figure 5 shows the actual
vertical positions of the colliding and reference positron
bunches in data set #2b at one detector. Due to limitations of
the present beam detector system, the effect of the beam-
beam interaction is visible only in the difference between the
two bunches. Fitting a cubic polynomial to the colliding
bunch’s position and finding the inflection point does not
agree with the inflection point of the difference data. In fact,
adding the quadratic and cubic terms does not significantly
improve the “goodness” of the fit.

IV. CONCLUSION

The experiment was successful in that the effects of the
beam-beam interaction on the closed orbit were observed and
measured, and the measurements were consistent with the
formulae in section II. However, the need for a reference
bunch as demonstrated in figure 5 makes this method
impractical for use during normal operating conditions. Two
pairs of dedicated detectors on either side of the interaction
point (to measure both the position and slope of the electron
and positron orbits separately) might be a more reliable
method of determining the overlap of the beams at the IP.
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