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Abstract II. EQUATIONS OF MOTION

We present a phenomenology of crystalline beams in storagdVe use a curvilinear orthogonal coordinate system [7],[4],
rings. We use the smooth approximation to solve the equatioWderex andy denote the horizontal and vertical direction, re-
of a test particle moving in the focussing potential of the storaggectively,o the path length difference arid the momentum
ring, and in that of the other ions. We find simple confinemergror. The equations of motion of the test particle are derived

and stability conditions. from the quadratic Hamiltonian discussed in [7], viz.:
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When ions in a storage ring are cooled sufficiently, they un- .7 4 i, (s)x + Qro 9 Puc = h(s)s; (2)
dergo a phase transition to a crystalline ion beam. These crys- eAB*y?
talline beams have already been observed in Molecular Dynam- o = k3 L ha 3)
ics simulations and ion trap experiments [1], [2], [3]. Among 42 ’

other things, crystalline beams provide a new way to obtain in- , Qro 0.

tense ion beams. We present an analytical study of ground state o = m do (4)
crystalline beams. We examine the stability of the motion of a

test particle in the crystalline beam in a storage ring consistihfe derivatives are with respect to the curvilinear longitudinal
of linear elements. We find the beam's confinement and stabifi§erdinates; 3 andy are the usual relativistic factors(s) is the
conditions. Using simple, arguments from classical dynami&sirvature, ands, ; (s) the focussing functions which describe
we obtain a succession of beam structures, as the ion denistj&sstorage ringd,. is the space-charge potential, ands the
increased. classical proton radius.

We start with a collection of ions with mass number A, and e expand the space charge potenbial to second order in
atomic number Q already near zero-temperature equilibrium pscgnall deV|at|or!s around the (_conjectured) equ_lllbrlt_Jm position
sition. The crystalline beam consists of a bundle of substrin@§,the test particle. After putting these expansions in the equa-
with ions placed a distanck apart in the longitudinal direc- HONS Of motion, we obtain two sets of equations: Emelope
tion. The space-charge force on a test particle in the beam is§q-ationsdetermining the equilibrium position of the test par-
cluded as a perturbation in the familiar single particle equatioiig'® in the storage ring, and those for the motion around this
of motion [4]. We perform a “Gedanken Experiment” in whictgauilibrium. _ _ _
we systematically increase the number of ions in the crystallinemOr Storage rings with smooth lattice functions and smooth
beam, and hence decreaseAt each step we determine the stabending we may use themooth approximatian That is, we
bility of the equilibrium of the test particle. At a critical value  replace the local focussing forcés, . (s) with their averages
the focussing forces no longer balance the space charge andR&nd the ring. The average value of the amplitude function
orbits along which the substrings lie, undergpithfork bifur- 1S ¥»,»/R. In addition, we replace the local curvatures) by
cation[5]. Two new stable orbits with the same period originaty/ /2. i-€. its average around the ring. We will use this below to
out of the unstable orbit, according to the PoimeBendixson OPtain estimates of the tune shift.
theorem [6]. As the number of ions is increased further, the pro-

cess repeats itself: each stable orbit will become usntable, and lll. CONFINEMENT
undergo a pitchfork bifurcation, doubling the number of sub- Confinement in the transverse direction is provided by the fo-
strings. cusing of the storage ring. The crystalline beam has to be closed,

Therefore, the specifics of the ground state of the crystallined have the same periodicity as the storage ring. We can use

beam is a function of the ion denisty, and focussing propertigss closure, orsochonismcondition-«' = 0 —to aproximately
of the storage ring. Each crystalline beam is characterized ibyegrate Eq(3). We find, that the momentum err§rof the test
a range of values of the inter-ion spaciig The upper limit particle varies linearly with its horizontal displacement from the
is the ion spacing when the structure is formed, and the low(gilute beam) reference trajectary. This approximation is ap-
limitis the ion spacing when the structure becomes unstable, gmdpriate only for a sufficiently smooth lattice [7]. Substituting
undergoes a bifurcation. In this bifurcation picture, the lowaur approximate expression farin Eq. (2) gives the envelope
limit of a structure corresponds roughly to the upper limit of thequations:
next structure.
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*Work performed under the auspices of the U.S. D.O.E.
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The kinematic term proportional tg? is entirely due to the

isochronismcondition across one super-periokl, is the char-
acteristic lenght of the crystalline beam:

IV. Stability
A. The Stability Equations

u' + [Ko(s) Folw = 0. (6)

The motion of the test particle around the equilibrium is de-
scribed by the equations:

1 4/\3
2 2\ ® " [Ky(s) — —=—=n = 0, 14
A = Q7 rogo It ’ 7 y' + [Ku(s) goR2/\377 ly (14)
AB2~5 3
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R is the radius of the storage ring, ag¢is a numerical fac- v+ [Kn(s) — mﬁh]l‘ = hd, (15)
tor, approximately equal tb.2. 7, and.F, are proportional to §
the first order derivative of the space charge potential around the o = hr—-—, (16)
equilibrium. These equations are identical to those of a test par- 5
ticle perturbed by a space charge force. Because the period of 5 = 292 47 neo. (17)
the crystalline beam has to be the same as that of the storage GoRZN3"°

ring, the tune shift induced by the space charge should be Ia{ﬂe . .

. - v, are proportional to the second order expansionbgf
enougr_\toe_ach the mtegral_ spband [71'. [4].' Using the smooth round the equilibrium of the test particle. The space charge
approximation, together with the familiar incoherent tune sh

imate 1o i thi dit btain Hezizontal and rce of the crystalline beam perturbs the free-oscillation mo-
estimate to Impose this conaition, we obtain frwizontal and i, of the test particle. Again, we can use the smooth approxi-
vertical confinement conditions

mation to find out when the tune crosses the stopband. Only an

A \ 3 (8) integral stopband, corresponds to a pitchfork bifurcation. A half
Fro (AcChw)”, integral stopband corresponds to a period doubling, and this vi-
with: olates the confinement conditions, since crystalline beams need
' o, to have the same periodicity as the storage ring. The lower limit
Chw = (Vnwlnov) 3, (9) \ of the ion spacing in the crystalline beam is given by:
- 1 72 1
ovp = 3 (vh —m Np) — oA (10) AN =18y Ae Ch (18)
1 . .
vy = Sw—mN), (11) V. Results and Discussion
N, is the super-period of the storage ring, andn integery,, , We investigated a succession of crystaline beams for weak (

are the dilute beam tunes, and correspond to the working patht= 0-001), and moderateX = 0.25) defocussing. To obtain
of the storage ring. The term i is subtracted from the actualth€ €nvelope we solved Eqg) and(13). The stability followed
distance of the horizontal working tune to the nearest stopbaff@m Ed-(18). Our results are shown in Figs., and2. We
Therefore, for the appearance of a horizontally extended “Cry@nsider gold iongQ = 57, A4 = 157) in a storage ring with a
talline Beam”, the following condition needs to be satisfied: Magnetic rigidity of 1.2 Tm, a radius of 6.46 m, a superperiod
of 16, and tunes, = 4.8. v, = 4.8, for A = 0.001, and5.54,
v < V 2y (12) for A = 0.25; \, = 47 pm. L is small, so we have ignored it.

This generalizes the condition obtained by Wei, Li and Sessledn our analysis, we start with the string. There is no upper
[3], and in particular implies that the storage ring has to be olyMit to A; the string is formed even by very dilute ion clouds.
erated below the transition energy. n the smooth approximation, the lower limit is determined by

A is the same for all substrings, and we can combine tHe horizontal, and vertical stopband of the storage ring. Using

horizontal and vertical confinement condition into the envelopansfer matrices, we determined however, that for most realistic
function W: storage rings, the coupling resonance between the longitudinal,

and transverse motion in the horizontal plane is quite important.

=3 -
W = % = f—g =1-Ax ?—,h, (13) The focussing in the vertical direction is the largest, and the
v Cp, Ly

next stucture is a horizontal zigzag. Using transfer matrices we
whereA is the defocussing. Furthermore, this implies that thaetermined that only extremely smooth storage rings can sup-
solutions of the envelope equations are invariant under refl@ort horizontal zigzags. Therefore, for storage rings that support
tions, and rotations. higher order crystaline beams, the smooth approximation must
The confinement in the longitudinal direction is provided bige accurate.
the repulsion between the ions in the “Crystalline Beam”. In the At the point of bifurcation, we find that the ion spacing of the
absence of curvature, there is no net longitudinal force when ttigzag is roughly twice that of the string from which it origi-
ions are in their equilibrium position. The longitudinal forcenates. In addition, to balance the longitudinal forces, the two
between the different strings in the crystalline beam is zemybstrings are shifted by half an ion spacing. This is all in
when the logitudinal shift between them is either either A\ /2.  agreement with the bifurcation picture. For large defocussing
Right after a bifurcation, some of the substrings have a relatif¢® > 0.5), the zigzag bifurcates in the plane. Edr< 0.5, the
shiftof A/4, or3\/4. However, we find, that as these substringdgzag bifurcates in the vertical direction, and goes over into a
move away from each other, their final shifts willbbeor A/2.  helix. Again , the ion spacing roughly doubles at bifurcation.
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Figure 1. The transition from string), to horizontal zigzag Figure 2. The transition from strin@), to horizontal zigzag
(AB), to helix (CDEF), and to shell(16) (GHIKL. .) using the (AB), to helix (CDEF), and to shell(16) (GHIKL. .) using the

smooth approximation, fak = 0.001.

To balance the longitudinal forces , the four substrings shift a
little bit longitudinally as they move away froeach other. This [1]
transition region is very small.

Eventually, the helix will become unstable, and its four sub-
strings will each splitin two, to form a shell consisting of eight
substrings. We call this structure shell(8), to distinguish it from
other shells. The ion spacing doubles again, and the substripgs
shift longitudinally as they move away from each other, in order
to maintain longitudinal equilibrium.

The next shell structure, shell(16), is formed when the eight
substrings of the shell(8) split. It is unstable right from the stai\%]
Therefore, a shell with eight substrings is the largest hollo
crystalline beam we obtained. 4]

Putting a string in the middle of the shell(16), along the reL5]
erence orbit, stabilizes it. This is in agreement with the M
simulations of Wei et al. [3].

[6]
[7]

smooth approximation, fak = 0.25
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