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Abstract

We present a phenomenology of crystalline beams in storage
rings. We use the smooth approximation to solve the equations
of a test particle moving in the focussing potential of the storage
ring, and in that of the other ions. We find simple confinement,
and stability conditions.

I. GENERAL OVERVIEW

When ions in a storage ring are cooled sufficiently, they un-
dergo a phase transition to a crystalline ion beam. These crys-
talline beams have already been observed in Molecular Dynam-
ics simulations and ion trap experiments [1], [2], [3]. Among
other things, crystalline beams provide a new way to obtain in-
tense ion beams. We present an analytical study of ground state
crystalline beams. We examine the stability of the motion of a
test particle in the crystalline beam in a storage ring consisting
of linear elements. We find the beam's confinement and stability
conditions. Using simple, arguments from classical dynamics,
we obtain a succession of beam structures, as the ion denisty is
increased.

We start with a collection of ions with mass number A, and
atomic number Q already near zero-temperature equilibriumpo-
sition. The crystalline beam consists of a bundle of substrings,
with ions placed a distance� apart in the longitudinal direc-
tion. The space-charge force on a test particle in the beam is in-
cluded as a perturbation in the familiar single particle equations
of motion [4]. We perform a “Gedanken Experiment” in which
we systematically increase the number of ions in the crystalline
beam, and hence decrease�. At each step we determine the sta-
bility of the equilibriumof the test particle. At a critical value�,
the focussing forces no longer balance the space charge and the
orbits along which the substrings lie, undergo apitchfork bifur-
cation[5]. Two new stable orbits with the same period originate
out of the unstable orbit, according to the Poincar´e-Bendixson
theorem [6]. As the number of ions is increased further, the pro-
cess repeats itself: each stable orbit will become usntable, and
undergo a pitchfork bifurcation, doubling the number of sub-
strings.

Therefore, the specifics of the ground state of the crystalline
beam is a function of the ion denisty, and focussing properties
of the storage ring. Each crystalline beam is characterized by
a range of values of the inter-ion spacing�. The upper limit
is the ion spacing when the structure is formed, and the lower
limit is the ion spacing when the structure becomes unstable, and
undergoes a bifurcation. In this bifurcation picture, the lower
limit of a structure corresponds roughly to the upper limit of the
next structure.
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II. EQUATIONS OF MOTION
We use a curvilinear orthogonal coordinate system [7],[4],

wherex andy denote the horizontal and vertical direction, re-
spectively,� the path length difference and�, the momentum
error. The equations of motion of the test particle are derived
from the quadratic Hamiltonian discussed in [7], viz.:
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The derivatives are with respect to the curvilinear longitudinal
coordinates; � and are the usual relativistic factors,h(s) is the
curvature, andKv;h(s) the focussing functions which describe
the storage ring.�sc is the space-charge potential, andr0 is the
classical proton radius.

We expand the space charge potential�sc to second order in
small deviations around the (conjectured) equilibrium position
of the test particle. After putting these expansions in the equa-
tions of motion, we obtain two sets of equations: Theenvelope
equationsdetermining the equilibrium position of the test par-
ticle in the storage ring, and those for the motion around this
equilibrium.

For storage rings with smooth lattice functions and smooth
bending we may use thesmooth approximation. That is, we
replace the local focussing forcesKh;v(s) with their averages
around the ring. The average value of the amplitude function
is �h;v=R. In addition, we replace the local curvatureh(s) by
1=R, i.e. its average around the ring. We will use this below to
obtain estimates of the tune shift.

III. CONFINEMENT
Confinement in the transverse direction is provided by the fo-

cusing of the storage ring. The crystalline beam has to be closed,
and have the same periodicity as the storage ring. We can use
this closure, orisochonismcondition –�0 = 0 – to aproximately
integrate Eq.(3). We find, that the momentum error�l of the test
particle varies linearly with its horizontal displacement from the
(dilute beam) reference trajectoryxl. This approximation is ap-
propriate only for a sufficiently smooth lattice [7]. Substituting
our approximate expression for�l in Eq. (2) gives the envelope
equations:
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The kinematic term proportional to2 is entirely due to the
isochronismcondition across one super-period.�c is the char-
acteristic lenght of the crystalline beam:
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R is the radius of the storage ring, andg0 is a numerical fac-
tor, approximately equal to1:2. Fh andFv are proportional to
the first order derivative of the space charge potential around the
equilibrium. These equations are identical to those of a test par-
ticle perturbed by a space charge force. Because the period of
the crystalline beam has to be the same as that of the storage
ring, the tune shift induced by the space charge should be large
enough to reach the integral stopband [7], [4]. Using the smooth
approximation, together with the familiar incoherent tune shift
estimate to impose this condition, we obtain thehorizontal and
vertical confinement conditions:
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Np is the super-period of the storage ring, andm an integer.�h;v
are the dilute beam tunes, and correspond to the working point
of the storage ring. The term in2 is subtracted from the actual
distance of the horizontal working tune to the nearest stopband.
Therefore, for the appearance of a horizontally extended “Crys-
talline Beam”, the following condition needs to be satisfied:
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p
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This generalizes the condition obtained by Wei, Li and Sessler
[3], and in particular implies that the storage ring has to be op-
erated below the transition energy.
� is the same for all substrings, and we can combine the

horizontal and vertical confinement condition into the envelope
function W:
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where� is the defocussing. Furthermore, this implies that the
solutions of the envelope equations are invariant under reflec-
tions, and rotations.

The confinement in the longitudinal direction is provided by
the repulsion between the ions in the “Crystalline Beam”. In the
absence of curvature, there is no net longitudinal force when the
ions are in their equilibrium position. The longitudinal force
between the different strings in the crystalline beam is zero,
when the logitudinal shift between them is either either0 or�=2.
Right after a bifurcation, some of the substrings have a relative
shift of �=4, or3�=4. However, we find, that as these substrings
move away from each other, their final shifts will be0, or�=2.

IV. Stability
A. The Stability Equations

The motion of the test particle around the equilibrium is de-
scribed by the equations:
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�h;v;e are proportional to the second order expansion of�sc

around the equilibrium of the test particle. The space charge
force of the crystalline beam perturbs the free-oscillation mo-
tion of the test particle. Again, we can use the smooth approxi-
mation to find out when the tune crosses the stopband. Only an
integral stopband, corresponds to a pitchfork bifurcation. A half
integral stopband corresponds to a period doubling, and this vi-
olates the confinement conditions, since crystalline beams need
to have the same periodicity as the storage ring. The lower limit
�l of the ion spacing in the crystalline beam is given by:
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V. Results and Discussion
We investigated a succession of crystaline beams for weak (

� = 0:001), and moderate (� = 0:25) defocussing. To obtain
the envelope we solved Eqs.(8) and(13). The stability followed
from Eq.(18). Our results are shown in Figs.1, and2. We
consider gold ions(Q = 57; A = 157) in a storage ring with a
magnetic rigidity of 1.2 Tm, a radius of 6.46 m, a superperiod
of 16, and tune�h = 4:8. �v = 4:8, for � = 0:001, and5:54,
for � = 0:25; �c = 47 �m. 2

R2 is small, so we have ignored it.
In our analysis, we start with the string. There is no upper

limit to �; the string is formed even by very dilute ion clouds.
In the smooth approximation, the lower limit is determined by
the horizontal, and vertical stopband of the storage ring. Using
transfer matrices, we determined however, that for most realistic
storage rings, the coupling resonance between the longitudinal,
and transverse motion in the horizontal plane is quite important.

The focussing in the vertical direction is the largest, and the
next stucture is a horizontal zigzag. Using transfer matrices we
determined that only extremely smooth storage rings can sup-
port horizontal zigzags. Therefore, for storage rings that support
higher order crystaline beams, the smooth approximation must
be accurate.

At the point of bifurcation, we find that the ion spacing of the
zigzag is roughly twice that of the string from which it origi-
nates. In addition, to balance the longitudinal forces, the two
substrings are shifted by half an ion spacing. This is all in
agreement with the bifurcation picture. For large defocussing
(� > 0:5), the zigzag bifurcates in the plane. For� < 0:5, the
zigzag bifurcates in the vertical direction, and goes over into a
helix. Again , the ion spacing roughly doubles at bifurcation.
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Figure 1. The transition from string (0), to horizontal zigzag
(AB), to helix (CDEF), and to shell(16) (GHIKL: : :) using the
smooth approximation, for� = 0:001.

To balance the longitudinal forces , the four substrings shift a
little bit longitudinally as they move away fromeach other. This
transition region is very small.

Eventually, the helix will become unstable, and its four sub-
strings will each split in two, to form a shell consisting of eight
substrings. We call this structure shell(8), to distinguish it from
other shells. The ion spacing doubles again, and the substrings
shift longitudinally as they move away from each other, in order
to maintain longitudinal equilibrium.

The next shell structure, shell(16), is formed when the eight
substrings of the shell(8) split. It is unstable right from the start.
Therefore, a shell with eight substrings is the largest hollow
crystalline beam we obtained.

Putting a string in the middle of the shell(16), along the ref-
erence orbit, stabilizes it. This is in agreement with the MD
simulations of Wei et al. [3].
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Figure 2. The transition from string (0), to horizontal zigzag
(AB), to helix (CDEF), and to shell(16) (GHIKL: : :) using the
smooth approximation, for� = 0:25
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