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Abstract that modes involving a significant breathing amplitude will be

Many explanations of halo formation in high current ion beamusnStabIe attune depressions as highas 0.7 or 0.8.

require the existence of particles WhiCh are qutside the beams Il. BREATHING MODE
central core. We propose a mechanism which is capable of mov-

ing some particles outside the core. Specifically, we consider al he envelope equation of a KV beam is
2-D KV beam which is started into a uniform density breathing I &2
oscillation by some mismatch in the transverse focusing pattern. a’ 4+ k*a= -+ - (1)
We then consider perturbations with non-linear space charge a a

density and find that they can be unstable against small os#herea is the beam radius, the prime standsdgz, k is the
lations for certain ranges of mismatch and tune depression. THae due to the external linear restoring fortés the perveance
stability limits in the mismatch/tune depression space have b&&fined byl = eIy Zyc/2mmvg, and wherere is the transverse
computed for the first three azimuthally symmetric modes wiginittance of the beam. He# = 1207 ohms is the impedance
non-linear charge density. It appears that even modest valuegfdfee space], is the beam current and is the particle’s axial
mismatch and tune depression can lead to instabilities which ¥féocity. We assume thaf* is independent of in the present

capable of moving particles outside the core of the beam. ~ work. If we start witha(0) = a1, ¢’(0) = 0, an integral of Eq.
(1) gives

|. INTRODUCTION

Interest has arisen recently in using ion linacs in high current
applications. In order to keep the beam loss to the order of 1 ppfRich enables us to obtain the other value:6& a,) at which
to avoid serious linac activation, it is necessary to understapd_ , a5 well as the period of the breathing motion.
emittance growth and halo formation in great detail in order t0\xe now seta> = e, and change the independent and

produce aracceptable design. dependent variables from,z,y to ¢ = [dz/3,u(¢) =

Accordingly, recent attention has been focusedummer- ..}/ /3¢ v(¢) = y(2)//Be, such that
standing the mechanism(s) by which halos are produced. ThI(S)/\/_ (@) =)/

includes a review of observations and related simulations[1], a ut+u=0, v+v=0, 3)
variety of simulations and experiments[2], [3]. Several modelsr_|
IC

have been constructed to explore resonances between par (& thing mode can be described by specifyinas a function

oscillation frequencies and the periodicity of the focusing sysz . . ;
tem or core oscillation modes[4], [5]. Many of the simulation§.f ¢, with periodg,. The transformation clearly depends on the

show the onset of chaotic motion at high space charge levelsZ€ of the “mismatch”, that is, on the relative amplitude of the
In a recentpublication[6], we proposed a simple model inbreathmg oscillation. If we scalé so that(¢) = o(¢)/k and

which a K-V beam, excited into a uniform density “breathingdefmea = I/ke, The envelope equation can be written as
mode by some sort of mismatch, interacts resonantly with indi- a 5 3067
vidual oscillating ions. If the ions find themselves outside the 2g — 1tac—ot 4o )
core for pa_rt o_f their oscillation, the resulting r_10n-l|near|ty qf We note that a matched beam (zero breathing amplitude)
the ion oscillations can lead to a phase lock with the breathlﬂg : 5

o . : the matched amplitude, = «/2 + /1+ «a?/4 and
oscillation, producing a halo whose parameters can be predlct el . A

at the tune depression for a matched beam is given hy

1 1
a’Z:QIﬁn%—i—kz(a%—az)—l—ez (—2——2) , (2

ay a

gre the dot denotes derivative with respectitoThus the

and whose appearance matches that in simulations performe 57
Wangler andplfy Ryne [7]. The unanswered questiorrwJ is: “What = 1fag/k=1/o0=/1+a*[4=a/2.
is the mecha_ni_sm by which ions i_nitially escape from the corein lIl. PHASE SPACE DISTRIBUTION
order to participate in the formation of the halo?” ) ] ] )

Obviously, any unstable longitudinal or transverse collective W& now wish to consider small perturbations from a uniform
modes involving the core are capable of moving particles O,g.parge_ density breathing mode m_the phase space distribution.
side the core. Studies of the transverse stability of a matcHe®f this purpose, we use the variableg), v(¢) and ¢ and
K-V beam([8], [9] have shown that instabilities exist for tune deVrte

ressions (ratio of ion oscillation frequency with space charge - - -

tpo thatwith(outspace charge) of 0.4 oC: Iess.ylnthe p?esent pager, Jlw 0,9, 9) = Jolw, v, 0) + fiuw, 0,8, 8,9), - (9)
we analyze the instabilities of a breathing K-V beam for variowghere the unperturbed distribution (including the breathing
collective modes involving non-uniform charge density and finrdode) is

*Work Supported by U.S. Department Of Energy. folu,v,,v) = (ro/7)d(u? +v? + 4% + 92 —1).  (6)



Herer, = Iy/vo is the line charge density of the beam. Thwvith

charge density (in the, y space) is then
F(u,v)=(u+ )" Fi(—j, m+j; m+1; u* +v?)

I 1 u? +v? <1 —Df(m+j+£-1)! ¢
= ’ 7. . . +m AV
Po FvoﬁE{ 0, w4+o2>1 (7) =djm % T 01 =0 (u+ iv) (u—iv)", (16)

and whered;,, = j! m!/(m + j — 1)l. HereP(¢) is a function

pL= 1 / du/dv' filu, v, 4,0, 6). (8) periodic ing (with periodgg, the same as that of the breathing

pe oscillation) which is yet to be determined. The corresponding
We assume that the electric field duestois derivable from a charge density, according to Eq. (9), is
scalar potentials(u, v, ¢) such that )

(u,v,0) = ZIEMd Z (=D (m+j+0)!
L <6Ex aEy) Pt PG 0] = T 306) ™ L W m+ 01 — 1 — 0)!
V-E = + — ¢
VBe \ du ov €0 (w4 i0) ™ (u — iv)", a7
1 [9°G  O*G 1 : .

= " Be <3u2 + 902 ) - Beeo /d“ /dvfl' ©) with m andj — 1 being the number of azimuthal and radial nodes

in the perturbed charge density.
The equations of motion, including the force due to the non- Requiring the self-consistency of Egs. (9) and (14), we obtain

uniform charge distribution, are an integral equation foP (¢)

. B e B0G . B e BOG B 4 0

utu= _mvg € du ’ vhv= _mvg € Ov’ (10) P(¢) = —a/_oo d1/)P(1/))0'(1/))%, (18)
If we now write where

1)t (m+j+r—1)
ri(m 4+ r)I(j — r)!

! cos™ T (¢ — ) x

Julu, v, ,6) = gl v, i, b, )y 407 42+ 07), (11) Q(p— ) =T &

r

keeping only terms linear ify or p; (or &), the Vlasov equation - (_1)1 [d; 1! cos™ (¢ — ) x
becomes o Fy(—j,m+j;m+ 1;c08* (¢ — ). (19)
Oy Jdg dyg dg _ @ _

bl s — un

56 Viau T8, T Yan " Var = R(u,v,u,v,¢), (12)  Torecapitulate, we have confirmed that the conjecture for the

electrostatic potential in Eq. (15) leads to a perturbed phase
where the right hand side is space density in Eq. (11) which reproduces the perturbed space
charge density corresponding to the potential in Eq. (15), pro-
vided P(¢) satisfies the integral equation in Eq. (18).

IV. DIFFERENTIAL EQUATION FORP(¢)

Equations (9) and (12) are coupled integro-differential equa-Tpe integral equation foP (¢) in Eq. (18) can be converted

tions. Since the operator on the left side of Eq. (12) correspongds, jinear differential equation with periodic coefficients. As
to the sinusoidal orbits in Eq. (3), Eq. (12) has a formal solutigy, illustration, we consider the cage= 2, m = 0, and take

which can be written as successive derivatives of Eq. (18) with respect t@btaining
P contributions from both the upper limit of the integral and the
glu,v,u,0,0) = / dyR(u' V' 4 0 1), (14) integrand. And then we construct a linear combinatiofr 0f),
—oo P(¢) andP*(¢) in which the integrals cancel. Specifically

R(u,v,4,0,¢) = 3 u@u 0 (13)

muvg €

whereu’ = ue — is,v' = ve —Us, % = uc+us, v’ = vc+wvs, P 4(20 4 2a0) P+4aé P+ (64 — 4ac 4 2a6)P=0. (20)
with ¢ = cos(¢ — ¢), s = sin(¢ — ).

We now proceed, as in the analysis for a matched K-§inces(¢) in Eq. (4)is a periodic function af with period¢,,
beam[8], to guess at the form of the potenfidk;, v, ¢) and to EQ. (20) is a Mathieu-like equation far(¢). If we let V' be
determine the perturbed phase space distribytionv, «, v, ¢) the four-component vectdqrP, PP, P), Eg. (20) can then be
using Egq. (14). Using Egs. (11) and (9), we then obtaimritten as the singlé x 4 matrix equatior/ = T'V where the
092G /ou? + §2G/9v? and require that it agree with our guessnatrix 7" depends ow becauser depends ow.

for . For general andm, by taking2;j+m or 2j+m+1 derivatives
Remarkably, our guess, which is almost identical to the foraf P(¢), it is always possible to construct a linear combination

used for the matched K-V beam, works once again. which eliminates all the integrals, as we did in Eq. (20). The
We now conjecture tha®(u, v, ¢) is order of the resulting differential equation2ig+ m for m even

or2j +m+ 1 form odd, as is also the dimension of the vector
G(u,v,¢) = P(¢)F(u,v) (15) V andthe matrix'".



V. NUMERICAL STUDIES

To determine the stability of a specific mode of density peft]
turbation, we first need to solve the equation of the envelof
oscillation shown in Eq. (4) numerically. With the solutions
of o(¢), we can numerically integrate the matrix form of the
differential equation fotP(¢). The eigenvalues of the transfer
matrix 7 for a breathing period then determines the stability ¢8]
the mode denoted by, m for the space charge and the mis-
match parameter;. Specifically, the mode will be unstable if
the absolute value of any of the eigenvalue§ g greater than [4]

1

Starting from the integral equation fét(¢) in Eq. (18), we [5]
can also make the transformation to differential equations for
(4,m) = (3,0) and (4,0),and thus determine their stabilitief5]
with respect to different parameters.

As for the matched beam, i.er, = oy, = constant, the sta- [3]
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bility limits of the modes(j, m) = (2,0), (3,0) and (4,0), are
wheren; e = 0.2425, 0.3859 and 0.3985 respectively. In faci9]
m = ( is the most restrictive mode for alb, andj = 4 is the
most serious mode that gives the the largest threshold value of
n, i.e. the smallest space charge limit, for @gl]0) modes[8].
Therefore, the (4,0) mode is the least stable mode for the space
charge limit of a KV beam. In Figs. 1, we show the stability dia-
gram for these three cases in fhe 7 space, wherg = a1 /ao.

The values ofy;,,;; onthep = 1 axis for each case is confirmed

in the figures.

The cusps appearing in these diagrams are caused by resc
nances of the mode frequency. In Fig. 1(a), the deep fissure
down to the matched parameter= 1 is where the phase ad-
vance of the (2,0) mode oscillation during one period of the
breathing mode i, whenm;ni; = 0.5235. Note that for this
resonance the breathing frequency is twice the mode frequency
We believe that the other slits appearing in the stable domains
are also due to resonance for particular parameters of tune de

the¢ = 7 resonance occurs outside of their stability limits. That
is why the deep fissure that meets the- 1 axis is not seen in
either thej = 3 or thej = 4 cases. One can also see that,
asj increases, not only doeg,,;; moves “backward”, i.e., to
smaller space charge, but also the stable band width for the mis-
match parameter becomes narrower. This implies, at least up
toj = 4 for a KV beam, that the area of stability decreases as
increases.

We are currently using numerical orbit simulations to confirm
the stability regions shown in Fig. 1.

Figure. 1. Stability diagram gf—» space, for (g) = 2, m = 0,
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pression and mismatch. As for the higher modes (3,0) and (4,0), |

0.

0.

©

unstable

stable stable

unstable {a) : 3=2,m=0

unstable

0 0.2 0.4 0.6 0.8 1

unstable

stable

unstable

(b) : 3=3, m=0
unstable 1

0.2 0.4 0.6 0.8 1
n

unstable

unstable

{c): 3=4,m=0

unstable

0.2 0.4 0.6 0.8 1

(b)j =3,m=0,and (c)j =4, m=0.




