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Abstract

Beam halo is an important issue for accelerator driven trans-
mutation technologies and other applications of CW proton ac-
celerators. These projects include, for example, the accelerator
transmutation of waste, accelerator-based conversion of pluto-
nium, accelerator production of tritium, and the development of
a next-generation spallation neutron source. To keep radioacti-
vation within acceptable limits these accelerators must operate
with a very low beam loss (less than a nanoampere per meter).
Beam loss is associated with the presence of a low density halo
far from the beam core. Understanding the physics of halo pro-
duction and determining methods to control beam halo are im-
portant to these projects. In recent years significant advances
have been made, both analytically and computationally. In the
following we describe recent developments in beam halo the-
ory and simulation, including results from multi-million particle
simulations.

I. THE BEAM HALO ISSUE

Beam halo is an important issue for many proposed projects
including the accelerator transmutation of waste (ATW),
accelerator-based conversion of plutonium (ABC), accelerator
production of tritium (APT), and the development of next-
generation accelerator-driven spallation neutron sources. All of
these projects utilize proton linacs with currents of order 100
mA and energies of order 1 GeV. Small beam losses in the linac
and in the high energy beam transport section following the linac
can produce radioactivation which can degradeaccelerator com-
ponents and hinder or prevent hands-on maintenance. Much
beam loss is due to the formation and interception of a low den-
sity beam halo at a large radial distance (4 or more times the rms
beam radius) from the beam core. At 1 GeV, losses must be kept
below 1 nA/m (preferably 0.1 nA/m) so that hands-on mainte-
nance can be performed shortly after accelerator shutdown. To
design accelerators in this ultra-low loss regime we mustunder-
stand the causes of beam halo.

II. THE PARTICLE-CORE MODEL IN A
CONSTANT FOCUSING CHANNEL

Early studies of mismatched charged particle beams showed
that such beams could undergo emittance growth and develop a
large halo surrounding the beam core [1][2]. Beam mismatch is
now believed to be a major source of halo formation. A popu-
lar model used to study beam halo is the particle-core model of
halo evolution[3]-[8]. In this model halo particles interact with
a beam core that is assumed to oscillate because of an initial ra-
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dial mismatch; the fields inside the core are roughly proportional
to r (in the two-dimensional case), while they are inversely pro-
portional tor outside the core. Thus, a halo particle moving
in and out of the core sees a strongly time-dependent nonlin-
ear field superposed on a linear external focusing field. As one
might imagine such a system exhibits a variety of dynamical
phenomena including chaos. In the particle-core model the core
is assumed to have a radial density profile that does not change
except in an rms sense. In other words, the beam is always a
KV distribution, or always a Gaussian, etc., but the rms size of
the beam is allowed to change in accord with the rms envelope
equations. In addition to this approximate treatment of the core,
the model is not self-consistent since the halo particles do not
affect the motion of the core. However, as will be shown below
results from the particle-core model are in excellent agreement
with results from high resolution particle simulations. A useful
way to study this model is to make a stroboscopic plot, in which
test particles are plotted once each cycle of the core oscillation.
(This technique was first used in halo studies by Lagniel [4][5].)
As an example, consider the case of a mismatched KV beam.
Figure 1 shows a stroboscopic plot of 32 test particles that were
initialized with 16 on thex-axis and 16 on thepx-axis. The
main features of the plot are: (1) a central region that has an ex-
tent somewhat larger than the core radius; (2) a large amplitude
region where particles exhibit betatron motion perturbed by the
core space charge; (3) a period-2 resonant region associated with
the fixed points to the left and right of the central region; and
(4) a separatrix with an inner branch that encloses the central
region and outer branches that separate the period-2 resonance
from the betatron-like trajectories. The period-2 resonance is
a parametric resonance corresponding to the fact that resonant
particles have an oscillation frequency which is one half the en-
velope frequency, as has been shown analytically by Gluckstern
[7]. In Figure 1 the separatrix is actually a narrow chaotic band,
and the outer edge of the band has the approximate shape of a
peanut. This “peanut diagram” provides a useful picture for de-
scribing halo formation: if particles in an initially well-defined
core reach the separatrix (by transport mechanisms not included
in the model), then they will be carried to large amplitudes along
the outer branch of the separatrix. Also, since a real beam would
not have an exactly uniform core, the injected beam could al-
ready have a low density tail that extends into the resonance re-
gion, and under the dynamics of the model these particles would
would be carried to large amplitude and form a halo.

Despite its simplicity, the particle-core model in a constant fo-
cusing channel predicts a maximum halo amplitude that is in ex-
cellent agreement with high resolution particle simulations run
on the CM-5 massively parallel computer at the Los Alamos
Advanced Computing Laboratory [9]. Figure 2 shows particle
simulation results for a mismatched KV beam having the same



Figure 1. Stroboscopic phase space plot based on the particle-
core model with a tune depression of 0.5 and an initial radius
0.62 times the matched radius. The location of 32 test particles
is plotted every time the beam envelope reaches a minimum, for
a total of 1000 oscillations.

parameters as Figure 1 (a tune depression of 0.5 and an initial
beam size that is 0.62 times the matched value). Though the
initial distribution has the property that it is uniform in(x; px)-
space, it is unstable for the parameters chosen, and the resulting
phase space of Figure 2 is highly nonuniform. (The threshold
for this instability has recently been determined analytically by
Gluckstern and his colleagues [10].) The first curve bounding
the chaotic band in Figure 1 is also shown in Figure 2 for com-
parison. The CM-5 results show that for this simple configu-
ration (an axially symmetric beam in a constant focusing chan-
nel) the maximum particle amplitudes are in excellent agree-
ment with the amplitude of the separatrix in the particle-core
model.

III. THE PARTICLE-CORE MODEL IN A
QUADRUPOLE CHANNEL

The application of the particle-core model to a periodic fo-
cusing channel is much more complicated than in a constant fo-
cusing channel: In a constant focusing channel there is one fre-
quency driving the dynamics, namely the frequency of the os-
cillating core; the same is true for amatchedbeam in a periodic
transport system. But a mismatched beam in a periodic chan-
nel does not normally oscillate at a single frequency, and this
means that stroboscopic plots, which were so useful in illumi-
nating the underlying physics in the constant focusing case (e.g.
the period-2 resonance) are not as applicable here. It should be
noted, however, that if one linearizes the mismatch then it is pos-
sible to excite a single “even” or “odd” mode by a careful choice
of initial conditions. This has been done by Lagniel [11].

In the case of a matched beam with little or moderate tune
depression, i.e. a tune depression between 1 (no space charge)
and 0.5, the envelope flutter does not appear to be a source of
halo formation. Consider for example a matched KV beam in a

Figure 2. Beam phase space from a 2 million particle simula-
tion on the CM-5 (65536 points are plotted). The outer peanut-
shaped set of points were obtained from the particle-core model.
The CM-5 results show that, for this configuration (an axially
symmetric beam in a constant focusing channel), the particle-
core model provides a good estimate of the maximum particle
amplitudes.

FODO channel with a zero-current phase advance per focusing
period of 70 degrees/cell which is depressed by space charge to
35 degrees/cell. A stroboscopic plot for a collection of test par-
ticles in such a system is shown in Figure 3; the data points are
recorded at the center of each horizontally focusing quadrupole
where the matched horizontal beam size isxedge = 4:6mm (i.e.
xrms = 2:3mm). It is clear that the period-2 resonant structure
is not present in this case. Though other resonances and weak
chaos are present, they do not provide a path by which particles
can be transported to large amplitudes. Figure 4 shows particle
simulation results for an initially rms matched Gaussian beam
in this channel after 22 periods. A large amplitude halo isnot
present. In contrast, Figure 5 shows the situation when the ini-
tial beam has the horizontal and vertical rms envelopes too small
by a factor of0:6. Now a significant halo is present. It is worth
noting that in the matched case the emittance growth (due to
charge redistribution) is only 6%, while in the mismatched case
it is approximately a factor of 2.

Since most of the projects mentioned previously will oper-
ate with somewhat modest space charge (i.e. tune depressions
greater than 0.5) envelope flutter in matched beams is not ex-
pected to cause halo formation. However, it is important to
note that, in the more space charge dominated regime, matched
beams in FODO channels can in fact develop halos [12]. This
has important ramifications for heavy ion fusion drivers.

IV. NUMERICAL MODELING OF BEAM HALO
USING MASSIVELY PARALLEL

PROCESSORS

For many of the projects mentioned above the fraction of par-
ticles lost in the accelerator must be kept below one part in105.



Figure 3. Stroboscopic phase space plot based on the particle-
core model for a matched KV beam in a quadrupole channel.
Zero-current phase shift/cell and depressed phase shift/cell are
�0 = 70deg, � = 35deg, respectively.

Figure 4. Simulation results showing the beam phase space after
22 focusing periods in a FODO channel. The initial distribution
is an rms matched Gaussian beam. (�0 = 70deg, � = 35deg)

This suggests that one would like to perform numerical simu-
lations with at least107 particles: If the simulation resulted in
there being 100 particles in the halo (corresponding to a frac-
tional loss of10�5), then the error associated with that num-
ber would be roughly1=

p
100 = 10%, which is adequate for

beam halo studies. (Of course, one has to question whether
or not the codes contain all the relevant physics needed to ac-
curately predict halo formation.) Such large scale simulations
are well suited to massively parallel processors. Particle sim-
ulation codes that are used to study beam halo have been de-
veloped for the CM-5 at the Los Alamos Advanced Comput-
ing Laboratory [13]. The codes perform numerical integration

Figure 5. Simulation results showing the beam phase space af-
ter 22 focusing periods in a FODO channel. The initial distri-
bution is an rms mismatched Gaussian beam. (�0 = 70deg,
� = 35deg)

of the particles' equations of motion using a second order or
fourth order symplectic integration algorithm [14][15]. In a one-
dimensional (radially symmetric) version of the code the space
charge field is found using Gauss's law, and it involves simply
using a mathematical library routine for ordering the particles in
radius. In two- and three-dimensional Particle-In-Cell versions
of the codes an area weighting scheme is used for the charge
deposition and field interpolation; for performance reasons this
is implemented using a somewhat complicated scheme that was
originally developed for cosmological simulations [16].

Besides using particle simulations, it is possible to solve
the Vlasov/Poisson equations directly, and this has also been
implemented on the CM-5 in one and two dimensions. A
Vlasov/Poisson code solves the equation

@f

@t
+ (~p � @~x)f � (rV � @~p)f = 0; (1)

wheref(�; t) is a distribution function on phase space (� =
(~x; ~p)). The potentialV is a sum of an externally applied
potential and a space charge potential which is obtained self-
consistently from Poisson's equation. To solve this equa-
tion on the CM-5, we utilize a spectral method coupled with
split-operator symplectic integration algorithms [14]. For ex-
ample, a second-orderaccurate stepping algorithm for the
Vlasov/Poisson equation is given by

f(�; t) =M(t)f(�; t = 0): (2)

where the mappingM is given by

M(t) = e�
t

2
(~p�@~x)et(rV �@~p)e�

t

2
(~p�@~x): (3)

In the context of symplectic integration algorithms, Yoshida
showed how to take an algorithm of order2n and use it to con-
struct an algorithm of order2n+2 [15]. For example, the above



second-order algorithm can be used to construct a fourth order
algorithm,

f(�; t) =M(z0t)M(z1t)M(z0t)f(�; t = 0); (4)

where

z0 =
1

2� 21=3
; (5)

z1 = � 21=3

2� 21=3
: (6)

Output from a two dimensional Vlasov/Poisson code is shown
in Figure 6. The initial distribution was a Gaussian in four-
dimensional phase space that was mismatched into a quadrupole
channel. The simulation utilized a1284 grid for a total of 268
million grid points.

Figure 6. Output from a direct Vlasov/Poisson simulation per-
formed on the CM-5 showing the beam density at one location in
a quadrupole channel. The four-dimensional distribution func-
tion was integrated over momenta to obtain the beam density on
a 128x128 grid.

Though this paper emphasizes modeling beam halo, it is
worth pointing out that this approach can be applied to several
other classical and quantum systems. For example, the Vlasov
code can be modified to study gravitating systems. Also, to
model the Schr¨odinger equation,

i�h
@ 

@t
= � �h2

2m
r2 + V  ; (7)

a second-order algorithm is given by
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r
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2

 (~x; t = 0): (8)

In fact, this is precisely the algorithm used by Feit and Fleck
to study a variety of quantum systems, including the vibrational
energy levels of triatomic molecules [17]. Using Yoshida's tech-
nique, it is in principle possible to obtain high order Schr¨odinger
codes, and a fourth order Schr¨odinger code has already been de-
veloped for the CM-5. Similar codes for evolving the density
matrix and the Wigner distribution function, both in the absence
and presence of dissipation and noise, have also been developed.

V. THREE DIMENSIONAL MODELING OF RF
LINACS

Most beam halo studies have previously dealt with one- and
two-dimensional systems. In the future it will be important to
model beam halo in linacs in three dimensions. High resolution
simulations should utilize a few times107 particles and a three-
dimensional grid (for space charge calculations) whose size is
roughly2563; this is based on the assumption that, if the beam
occupies some reasonable fraction of the grid points (e.g. one
half) then there will be a few particles per grid point, as has
been found to be adequate for modeling intense beams with PIC
codes. (It is interesting to note, however, that for gravitational
N-body codes used to model large scale structure formation in
the early universe one normally requires only 1/8 particle per
grid point.)

Recently there has been much progress in modeling rf linacs,
including accurate treatment of thedynamics in the rf gaps
[18][19][20]. Also, even when there is acceleration it is still
possible to use split operator symplectic integration algorithms
to evolve the particles, but it is useful to perform an additional
transformation on the Hamiltonian before applying the algo-
rithm. For example, suppose the vector potential for an rf gap is
given by

Ax =
e0(z)

2!�
x sin(!�t+ �)

Ay =
e0(z)

2!�
y sin(!�t+ �) (9)

Az = � 1

!�
fe(z) � r2

4
[e00(z) +

!2�
c2
e(z)]g sin(!�t+ �);

wheree(z) denotes the spatial part of the electric field atr = 0,

Ez(r = 0) = e(z) cos(!�t + �); (10)

and where a prime denotesd=dz. Then the transformed Hamil-
tonian for a system consisting of magnetic quadrupoles and rf
gaps, paraxial in the external fields, is given byH = Hx+Hy+
H� +Hsc, where
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1

2l
~p2x +

l
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Hsc =
q	

l�2o�oc
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In the above equationsgm denotes the magnetic quadrupole gra-
dient,	 denotes the space charge potential,l is a scale length,
andpo is the momentum of the synchronous particle. The quan-
tities
x, 
y, and
� are given by
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where�o ando are the relativistic factors on the synchronous
trajectory, and where�s = !�to(z) + � is the phase of the syn-
chronous particle. The above single particle Hamiltonian was
used as a starting point for deriving three-dimensional envelope
equations in rf linacs, and this was in turn used to develop a
procedure, based on a Hamiltonian formulation of the envelope
equations, to find matched beams in rf linacs [21]. The con-
cept of an envelope Hamiltonian has also been used in analytical
studies of halo formation [22],[23].

VI. SUMMARY
Much has been learned about the physics of beam halo, both

from a theoretical and computational viewpoint. Most impor-
tantly, beam mismatch has been identified as a major source of
beam halo. The particle-core model predicts a maximum halo
extent which is in excellent agreement with multi-million par-
ticle simulations. Also, it has been found that envelope flutter
associated with alternating gradient channels is not a significant
source of halo formation. Previous work has emphasized one-
and two-dimensional analysis and modeling of beam halo. In
the future, more difficult three-dimensional issues will have to
be addressed.
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