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I. INTRODUCTION

A chromatic beam extraction from a pulse stretcher ring
can be realized at a non-zero chromaticity of the machine. The
finite chromaticity value stimulates the dependence of the
betatron oscillation frequency on the particle energy. This
permits one to carry out the beam extraction through the use of
the betatron resonance by changing the particle energy.

Considering that during the chromatic extraction the
particles are found in the vicinity of the RF separatrix or cross
it, the computer code must ensure the simulation of the
nonlinear motion of electrons inside and outside of the RF
separatrix with due account of the synchrotron radiation
effects.

II. A DIPOLE MAGNET WITH A UNIFORM
FIELD.

In view of the radiations, the differential equation, the
solution of which describes the electron dynamics in the
dipole magnet, can be written as [1]:
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where e m,  are the electron charge and rest mass
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, v  is the electron velocity, 
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r

H  is the magnetic field strength vector.
Under the assumption that 

r

H  comprises only the axial
component and is independent of the coordinates and time,
eq.(1) can be integrated in the Cartensian system. It is
convenient to present the integration results in the cylindrical
frame ( , , )ρ ϕ z  as:
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where

Φ1 = s u( ) − s u0( )[ ]cosu0 − c u( ) − c u0( )[ ]sin u0 ,

Φ2 = c u( ) − c u0( )[ ]cosu0 − s u( ) − s u0( )[ ]sin u0 ,

ρ,ϕ , z  are the radius, azimutal angles and axial coordinate,

s u( ),c u( )  are the Fresnel sine and cosine integrals,
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The index '0' denotes that the associated quantities refer to
the initial moment t0 = 0 , ϕ0 = 0. Formulas (4)-(12) enable

one to calculate all the necessary quantities.
The procedure of calculating the electron parameters at the

exit of the dipole magnet with the angular length ϕ should be
carried out in the following order.

First, the s  value is obtained from formula (9) and is
substituted into formulas (3-8) and (10). Simultaneously,

E, vz , vρ
2 + vϕ

2( ), z,ρ, t  will be calculated.

Eventually, by the use of formula (4) and the obtained vρ

value, the vϕ  value is calculated.

Formulas (3-10) enable one to calculate all the necessary
quantities. However, their employment in the given form is
somewhat inconvenient for the computer. Therefore, to
simplify the procedure, the following approximations should
be made.

By virtue of the fact that the arguments of the Fresnel sine
and cosine integrals have large values ( u0 >> 4 *1015 γ −2H−1,

is in gausses), the s  and c  can be calculated by using their
asymptotic representations [2]:

S u( ) = 1
2( ) − 1

2πu
cosu + 0 1

u2






C u( ) = 1
2( ) − 1

2πu
sin u + 0 1

u2





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III. CYLINDRICAL RF CAVITY.

For the cylindrical Rf cavity operating in the fundamental
TM0 1 0  mode, the electrical and magnetic RF field
components in the cylindrical coordinate frame can be
represented as:

ε z = −ε 0 sin ωt + α( )I0 kr( ), Hϑ = −ε 0 cos ωt + α( )I1 kr( ),

where I0  and I1 are the Bessel functions; k = P

a
; P is the

first root of the equation I0 Pa( ) = 0 ; a  is the cavity cylinder

radius; r  is the polar radius. The z  axis is directed along the
cavity axis; ϑ  is the azimutal angle; ω = 2πν; ν  is the RF
field frequency.

By solving the differential Newton -Lorents equation
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 for the electron moving in the cavity,

we can obtain:
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Assuming kr〈〈1, we put I0 kr( ) ≡ 1. Under this

approximation, we have I1 kr( ) ≡ 0 , and therefore, in eq. (13)

should be also set to equal zero.



Using eqs. (11)-(14), we come to the following formulas:
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ż0
c







2









−1

;

vr0 = ṙ0 = dr
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By substituting the cavity length value equal to λ/2, where 
λ is the RF field wave length, into (16), we can calculate the
particle transit time
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It should be noted that at c1 = 0, ϑ̇ ≡ 0  the ṙ  and r
values are given by

ṙ = ṙ0E0

E
, r = r0E0Y

In the general case, the values of ṙ = vr  and r  should be

calculated by formulas
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The formulas presented here to calculate the dynamic
variables after it traversed the cavity can also be used for the
case, where ε0  and ω are the slow functions of time:
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IV. Conclusion.

The algorithms described in [3,4] can be used to describe
the dynamic characteristics of particles in the other magnetic
elements of storage ring. The calculation time of the proposed
mathematics model will be considerably longer. However it is
supposed that the adequately of the given model to the
physical process going at the extraction achromatic regime
will compensate this shortcoming.
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