Rapid Application Development Using the Tcl/Tk L anguage*

Johannes van Zeijts, CEBAF, 12000 Jefferson Avenue, Newport News, VA 23606

Abstract

During the last year high level applications at CEBAF were
written using the Tcl/Tk scripting language [1]. This language
is rapidly gaining in popularity, in part due to the ease of con-
structing programs with X11 graphical user interfaces, and in
part due to the ease of adding compiled user code for special-
ized purposes. Extensions to the language provide object ori-
ented programming [2], [3], which was used to develop ahierar-
chy of classes relevant for high level accelerator control.

We describe the basic language features, some 3rd party add-
on packages, and loca additionsto the toolbox. Next we de-
scribe thefeatures of the accel erator object hierarchy, and finally
describe applicationswritten using thistool box such astheMod-
el Server prototype, Slow Orbit and Energy Lock, the Linac En-
ergy Management System, and other applications.

[. Introduction

Tcl is an interpreted scripting language with only one data
type: strings. The language is not intended for number crunch-
ing but rather to provide scripting control to user contributed
compiled packages. Tk isonesuch packagewritten by theauthor
of Tcl. Tk providesaway to create spectacular X-11 graphicuser
interfaces in aminimal amount of time without any knowledge
of underlying GUI library packages [4], [5]. Interface elements
are simply addressed by a string name and can be placed on the
screen and configured by scripts or interactively. A rich set of
commands is avail able for event driven programming.

Locally devel oped code provides access to control systemin-
formation, lattice simulation codes, and matrix calculations[6].
Additionally we use the ‘expect’ extension [7] to provide apro-
grammed interface to existing 3rd party programs like Mathe-
maticaand Matlab, and the'blt’ extension[8] to providelineand
bar graph support. Finally the Tcl-DP extension [9] was used for
the network connections between server and client programs.

The goal of the abject oriented approach in this context isto
provide a set of classes with a well defined interface to allow
non-expert usersto create high level applicationswithout having
knowledge about the implementation of any of the lower level
functionality. We provide two sets of class hierarchies, one for
beam line elements like correctors and beam position monitors,
and onefor applicationslikeorbit and energy lock, and autosteer-
ing. Additionally, the object oriented extensions provide a clean
way to produce and maintain large amounts of code.

I1. Accelerator Objects

Accelerator beam line elements are well described in a hier-
archica way. An ‘Element’ class has placeholders for proper-
ties common to al beam line elements like position and lattice
functioninformation. ‘Magnet’ and‘Bpm’ classes speciaizethe

*This work was supported by the U.S. Department of Energy, under contract
No. DE-ACO05-84ER40150.

Element class and add element specific information. ‘Dipole’,
‘Corrector’, and ‘Quad’ classes are again a specialization of the
‘Magnet’ class. Tables with live information about beam line
elements can be generated with just a few lines of code. Here
we show the beam position panel (1) and the corrector panel (2).
User defined columns can be easily created and filled.

BPM Actions Selections
Name on pos heam status gold
IPM1ED2 (W x] -666 00066
0 Ny 0.00 Mo Beam 0.0415
IPM1AD1 (W x 0 -666 -0.2253
0.00 vy 000 Mo Beam 0.1482

Figure. 1. Beam Position Monitor Panel

Corrector Actions Selections

Name on hdl kmol angle
MBTI1L03H h 0.000 | 0.0
MBT1LO3V m v 82243 o 0.394585
MBTI1L04H N h 20.836 o 0.0789287
MBTI1LO4V v 0.000 L] 0.0
MBTI1LOSH h 0.000 | 0.0
MBTI1LOSV W v 87455 o 0.235759
MBTI1L06H H h -8.469 o -0.0206492
MBT1L.OAV v .00 | nn

Figure. 2. Corrector Magnet Panel

[11. Application Classes

Application classes areless obvious. In thiscase we have de-
cided to provideabasic ‘BpmLock’ class which handles all ba
sicactionsof highlevel applicationwhich concern bpms, likese-
lecting, reading gold val ues, beam losschecks, etc. The' Correc-
torLock’ class inheritsall this from the bpmlock class and adds
all actions concerning correctors. At thislevel virtual functions
are introduced for building response matrices, solving for new
correctors, checking solutions, setting correctors, and commu-
nication with the Matlab based compute server. These methods

provide the basic functionality needed for an orbit lock appli-
cation but are redefined in more specific classes like ‘ autosteer-
ing'. At the same level, inheriting from the bpmlock class, we
provide a class for controlling cavities. This one provides the
basic functionality needed for an energy lock application. New
high level applicationslike Quad Centering simply define anew
class deriving from the correctorlock class and add their specific
methods[10]. A new autosteer programfor the CEBAF arcswas
brought on linein avery short time by inheriting from the exist-
ing autosteer class and only redefining avery limited number of
methods responsible for the correction algorithm [11].

IV. Linac Energy Management

This application is required to calculate gradients for the RF
Cavitiesin the CEBAF linacs given arequested energy incresse.
After successfully setting the gradients, the programisto set the
quadrupolesinthelinac to provideeither a 60 or 120 degreefodo
lattice. The main extrainput to the program is a ‘ fudge factor’
which accounts for non-crested cavities and gradient calibration
errors. The program has been operational for more than ayear,
with only dight adjustmentsto the exception handling over this
period. Figure (3) givesthe main control panel.

Mon Apr 24 14:13:57 1995 |

Actions Selections

Quit |
Total Energy
445.0
Sum of GSET’s/2
406.0

Injector Energy
|45.00 +
Fudge factor
[L.o15 *

East Avc is setup for: 444.99925267062 Sum of DRVHop =

North Linac Increase

j400

4268325 |

Figure. 3. Linac Energy Management Control Panel

V. Model Server

All opticsrelated information at CEBAF is concentrated in a
‘Model Server’ application. This application is to store al rel-
evant beam line element information and isto serve up transfer
and response matrices between two arbitrary pointsin the ma-
chine to requesting client applications on the control network.
The optics calculations are usualy performed by Dimad [12]
but hooks are availableto include space charge and polarization
codes.

Applications connect to the modd server by declaring a
‘Model Client’ object. This object supports query cals to re-
trieve beam line elements and provides methods to retrieve re-
sponse matrices. It isalso the conduit through which beam line
elements get el ement specific information from the model server
like layout and lattice functions. As an example we providethe
code used to produce figure (1):

Model Cl'i ent new

Bpm :: addlist [new el ements bpns arcl]
Bpm :: on pos
Bpm :: Wndow . b

.b on pos status gold

The model server does not have a graphic user interface, but
a ‘model sniffer’ application is available in the control room

to update the information after lattice changes, see figure (4).
Producing the model server in Tcl with lattice information for

Do not Kill me, I am the GOLD model server

Model Server gold |
5.5 45

|45 445

425 |

445 845

|845

|1245

|1645

|2D45

|2845

|3245

|3645

|
|
|
|
2485 |
|
|
|
|

|4045
Figure. 4. Model Server Status Panel

the whole machine turned out to be a bit of a challenge due to
the memory overhead of the ‘[incr tcl]’ object package. Pro-
cess sizesroutinely reached themachinelimit. For thisand other
reasons the model server application was the first chosen to be
converted to C++ [13]. That application will maintain the exist-
ing model server in functionality and interface, and is expected
to improve memory usage and data throughput by a significant
amount.

VI. Slow Orbit and Energy Lock

One of the most important high level applications produced
werethe dow feedback loops. Their task isto provideameansto
obtai n reproducibleresultsfor the setup of linacsand arcs. They
maintain a‘golden’ orbit at certain beam position monitors and
maintain the design energy by obtaining an energy offset value
from the beam position monitors throughout the arcs. On start
up, response matrices are collected from the model server and
dispatched to the matrix package. Singular value decomposition
is used to obtain correction values for orbit and energy while at
the same time protecting against singular equations. A ‘mem-
ory’ factor isintroduced to facilitate the running of several locks
simultaneously without introducing spurious oscillations. Fig-
ure (5) shows the control panel for the energy lock.

VII. Auto Steering

Linac autosteering isrequired to on demand steer the beam to
golden values while maintaining small corrector values. The al-
gorithmisidentical totheorbitlock applicationand the corrector

Quit Program

initialized
On # Off Diagnostics mode Update Response
x= 0 X = 0
V= 1] ¥ = 1]
dp/p = 0 dp =
dP/P setpoint = |0.000 Algorithm
Memory = 0.5
Fudge = |0.75

Figure. 5. Control Panel for dow Energy Lock

goal has been achieved by only using correctorsat positionswith
large beta functions. As usual the main exceptions arein detect-
ing and handling of malfunctioning beam position monitors. A
typical resulting corrector patternisgivenin figure (6). The Arc
Auto Steering agorithmis based on the linac steering but uses a
much more complex algorithm [11], executed by Mathematica.

A typical corrector change chart is shown in figure (7).

Correctors B

<z>— D.09FFSFS5S

g / ; .
& LS ff
o —| \/ /‘ /' '
T T T
o 100 zoo
= frrefers)
Correctors ¥V
<== 0101605
100 —]
g A A
]
Tho | /’

T
100

= frrefers)

EL D

Figure. 6. Corrector Display, in Gauss-cm and mrad

We have found the Tcl/Tk environment to be an ideal tool for
rapidly producing fully functional prototypes of high level ap-
plications. Emphasis of application development can be put on
the physics of the problem and on the exception handling, since
longlearning curvesfor windows programming are cut out of the

process.

VI1Il. Conclusion

A0GH I

Horizontal Correctors

2

Vertical Correctors

2

+
1
=
.5
!! EEE!IIEEI!III é IIII III I
gglgggggggg;ggg;ﬂg 55| B2 850R AR BAR BB ARNRADBD
=OCNMM ENCMHMONMONT-NNOO T =TT
Ry o e R dq << B dd LA DL AT AL L
EELaE LR e e EE o EEEEC e o o e o o o o
~ 000 00 0000 0 | 00 0 00 00 0000 A0 0.0 40 00 (00 00 A0 (0
222U ==2==2 =2 222 =2 SESSRSL Seesen T asEosnas
EEEERNEREEENNEEEER o | ENNNNENNNNNENNRNNNNNREND
rT T 11T 1T T T T T T T T TTTTTTTTTT T T T T TT T T T TTTTT
12 3545 6 78 3101112151415 16 17 12345678 51001121314 1516 17 1819 2031222324
#

Horizontal Correctors

Vertical Correctors

é delta BDL

T T T T T T TTTTTTTTTTTTTTTTTT
10 11 12 17 14 15 16 17 12345678 910111213141516171819 2021222324

T T T T T T T
1234567389
#

Figure. 7. Arc AutoSteering corrector change barcharts

(1]
(2]
(3]
[4]

[5]
(6]

[7]

(8]
[9]
[10]
[11]

[12]
[13]

References

J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley
Professional Computing Series (1994)

M. J. McLennan, [incr Tcl]: Object-Oriented Program-
ming in Tcl, Proceedings of the Tcl/Tk Workshop, UCB,
June 10-11, 1993.

IXI Limited, Object Tcl, http://www.x.co.uk

B. Welch, Practical Programming in Tcl and Tk, Prentice
Hall (1995)

Tcl/Tk isavailable from ftp.aud.a catel.com:/tcl

J.van Zeijts, High Level Application Prototyping, CEBAF-
TN-94-038

D. Libes, Exploring Expect: A Tcl-based Toolkit for Au-
tomating Interactive Programs, O’ Reilly and Associates,
Inc. (1995)

G. Howlett, Bacon, Lattice and Tomato graphsfor Tcl

L. A. Roweet.al., Tcl Distributed Programming

R. Li, Quad Centering, CEBAF MCC procedure

Y. C. Chao, An Orbit Correction Algorithm for General
Beam Lines, submitted to N.I.M.

R. Servranckx et. d., DIMAD manual

B. Bowling et. d., Integrated On-Line Modeling at CE-
BAF, these proceedings.

