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Abstract

During the last year high level applications at CEBAF were
written using the Tcl/Tk scripting language [1]. This language
is rapidly gaining in popularity, in part due to the ease of con-
structing programs with X11 graphical user interfaces, and in
part due to the ease of adding compiled user code for special-
ized purposes. Extensions to the language provide object ori-
ented programming [2], [3], which was used to develop a hierar-
chy of classes relevant for high level accelerator control.

We describe the basic language features, some 3rd party add-
on packages, and local additions to the toolbox. Next we de-
scribe the features of the accelerator object hierarchy, and finally
describe applications written using this toolbox such as the Mod-
elServer prototype, Slow Orbit and Energy Lock, the Linac En-
ergy Management System, and other applications.

I. Introduction
Tcl is an interpreted scripting language with only one data

type: strings. The language is not intended for number crunch-
ing but rather to provide scripting control to user contributed
compiled packages. Tk is one such package written by the author
of Tcl. Tk provides a way to create spectacular X-11 graphic user
interfaces in a minimal amount of time without any knowledge
of underlying GUI library packages [4], [5]. Interface elements
are simply addressed by a string name and can be placed on the
screen and configured by scripts or interactively. A rich set of
commands is available for event driven programming.

Locally developed code provides access to control system in-
formation, lattice simulation codes, and matrix calculations [6].
Additionally we use the ‘expect’ extension [7] to provide a pro-
grammed interface to existing 3rd party programs like Mathe-
matica and Matlab, and the ‘blt’ extension [8] to provide line and
bar graph support. Finally the Tcl-DP extension [9] was used for
the network connections between server and client programs.

The goal of the object oriented approach in this context is to
provide a set of classes with a well defined interface to allow
non-expert users to create high level applications without having
knowledge about the implementation of any of the lower level
functionality. We provide two sets of class hierarchies, one for
beam line elements like correctors and beam position monitors,
and one for applications like orbit and energy lock, and autosteer-
ing. Additionally, the object oriented extensions provide a clean
way to produce and maintain large amounts of code.

II. Accelerator Objects
Accelerator beam line elements are well described in a hier-

archical way. An ‘Element’ class has placeholders for proper-
ties common to all beam line elements like position and lattice
function information. ‘Magnet’ and ‘Bpm’ classes specialize the
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Element class and add element specific information. ‘Dipole’,
‘Corrector’, and ‘Quad’ classes are again a specialization of the
‘Magnet’ class. Tables with live information about beam line
elements can be generated with just a few lines of code. Here
we show the beam position panel (1) and the corrector panel (2).
User defined columns can be easily created and filled.

Figure. 1. Beam Position Monitor Panel

Figure. 2. Corrector Magnet Panel

III. Application Classes
Application classes are less obvious. In this case we have de-

cided to provide a basic ‘BpmLock’ class which handles all ba-
sic actions of high level application which concern bpms, like se-
lecting, reading gold values, beam loss checks, etc. The ‘Correc-
torLock’ class inherits all this from the bpmlock class and adds
all actions concerning correctors. At this level virtual functions
are introduced for building response matrices, solving for new
correctors, checking solutions, setting correctors, and commu-
nication with the Matlab based compute server. These methods



provide the basic functionality needed for an orbit lock appli-
cation but are redefined in more specific classes like ‘autosteer-
ing’. At the same level, inheriting from the bpmlock class, we
provide a class for controlling cavities. This one provides the
basic functionality needed for an energy lock application. New
high level applications like Quad Centering simply define a new
class deriving from the correctorlock class and add their specific
methods [10]. A new autosteer program for the CEBAF arcs was
brought on line in a very short time by inheriting from the exist-
ing autosteer class and only redefining a very limited number of
methods responsible for the correction algorithm [11].

IV. Linac Energy Management

This application is required to calculate gradients for the RF
Cavities in the CEBAF linacs given a requested energy increase.
After successfully setting the gradients, the program is to set the
quadrupoles in the linac to provide either a 60 or 120 degree fodo
lattice. The main extra input to the program is a ‘fudge factor’
which accounts for non-crested cavities and gradient calibration
errors. The program has been operational for more than a year,
with only slight adjustments to the exception handling over this
period. Figure (3) gives the main control panel.

Figure. 3. Linac Energy Management Control Panel

V. Model Server

All optics related information at CEBAF is concentrated in a
‘Model Server’ application. This application is to store all rel-
evant beam line element information and is to serve up transfer
and response matrices between two arbitrary points in the ma-
chine to requesting client applications on the control network.
The optics calculations are usually performed by Dimad [12]
but hooks are available to include space charge and polarization
codes.

Applications connect to the model server by declaring a
‘Model Client’ object. This object supports query calls to re-
trieve beam line elements and provides methods to retrieve re-
sponse matrices. It is also the conduit through which beam line
elements get element specific information from the model server
like layout and lattice functions. As an example we provide the
code used to produce figure (1):

ModelClient new
Bpm :: addlist [new elements bpms arc1]
Bpm :: on pos
Bpm :: Window .b
.b on pos status gold

The model server does not have a graphic user interface, but
a ‘model sniffer’ application is available in the control room

to update the information after lattice changes, see figure (4).
Producing the model server in Tcl with lattice information for

Figure. 4. Model Server Status Panel

the whole machine turned out to be a bit of a challenge due to
the memory overhead of the ‘[incr tcl]’ object package. Pro-
cess sizes routinely reached the machine limit. For this and other
reasons the model server application was the first chosen to be
converted to C++ [13]. That application will maintain the exist-
ing model server in functionality and interface, and is expected
to improve memory usage and data throughput by a significant
amount.

VI. Slow Orbit and Energy Lock
One of the most important high level applications produced

were the slow feedback loops. Their task is to provide a means to
obtain reproducible results for the setup of linacs and arcs. They
maintain a ‘golden’ orbit at certain beam position monitors and
maintain the design energy by obtaining an energy offset value
from the beam position monitors throughout the arcs. On start
up, response matrices are collected from the model server and
dispatched to the matrix package. Singular value decomposition
is used to obtain correction values for orbit and energy while at
the same time protecting against singular equations. A ‘mem-
ory’ factor is introduced to facilitate the running of several locks
simultaneously without introducing spurious oscillations. Fig-
ure (5) shows the control panel for the energy lock.

VII. Auto Steering
Linac autosteering is required to on demand steer the beam to

golden values while maintaining small corrector values. The al-
gorithm is identical to the orbit lock application and the corrector



Figure. 5. Control Panel for slow Energy Lock

goal has been achieved by only using correctors at positions with
large beta functions. As usual the main exceptions are in detect-
ing and handling of malfunctioning beam position monitors. A
typical resulting corrector pattern is given in figure (6). The Arc
Auto Steering algorithm is based on the linac steering but uses a
much more complex algorithm [11], executed by Mathematica.
A typical corrector change chart is shown in figure (7).

Figure. 6. Corrector Display, in Gauss-cm and mrad

VIII. Conclusion

We have found the Tcl/Tk environment to be an ideal tool for
rapidly producing fully functional prototypes of high level ap-
plications. Emphasis of application development can be put on
the physics of the problem and on the exception handling, since
long learning curves for windows programming are cut out of the
process.

Figure. 7. Arc AutoSteering corrector change barcharts
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