
Commissioning Software Tools at the Advanced Photon Source�

L. Emery
Argonne National Laboratory

9700 So. Cass Ave., Argonne, IL 60439

Abstract

A software tool-oriented approach has been adopted in the
commissioning of the Advanced Photon Source (APS) at Ar-
gonne National Laboratory, particularly in the commissioning
of the Positron Accumulator Ring (PAR). The general philoso-
phy is to decompose a complicated procedure involving mea-
surement, data processing, and control into a series of simpler
steps, each accomplished by a generic toolkit program. The im-
plementation is greatly facilitated by adopting the SDDS [1]
(self-describing data set) protocol, which comes with its own
toolkit. The combined toolkit has made accelerator physics
measurements easier. For instance, the measurement of the op-
tical functions of the PAR and the beamlines connected to it
have been largely automated. Complicated measurements are
feasible with a combination of tools running independently.

I. Introduction

There generally occur two types of control room activities
during commissioning of an accelerator. One is letting the beam
“go” as far as it can, and tweaking all manner of possibly rel-
evant “knobs” to improve performance. The other is carefully
measuring the beam properties, optical functions, etc. in order
to deduce sources of limitations, or simply to verify that the ac-
celerator performance is within specification. Since beam stud-
ies time is highly valued, an efficient and flexible system of soft-
ware tools for collecting, processing, and displaying of data was
developed at APS. These tools have been in use since the begin-
ning of the commissioning of the APS PAR, and have greatly
aided accelerator physics personnel in the control room.

This paper briefly introduces the toolkit concept, then gives
an overview of the accelerator physics tools written so far. Spe-
cific examples of applications of beam control and measure-
ments are presented afterwards.

II. SDDS Toolkit

A toolkit is a set of generic and cooperative programs whose
actions may be combined to produce a more complicated ac-
tion. The motivation of implementing a toolkit is to elimi-
nate the repitition of graphics and data processing programming
work among computer codes. At APS, M. Borland had already
developed the SDDS toolkit [1] for postprocessing and plotting
output from many accelerator physics codes. This toolkit re-
quires the use of the SDDS self-describing file protocol [1] for
data files. Data files are organized in “pages” consisting pri-
marily of tables of data. The most useful feature of the proto-
col is attributing names, units, and descriptions to the data by
way of a file header. Thus columns in the data tables can be
operated upon by listing their names as part of an option of a
tool command line. For instance, suppose that an SDDS data
file, aps.twi, contains the Twiss parameters of the APS ring

�Work supported by U.S. Department of Energy, Office of Basic Energy Sci-
ences under Contract No. W-31-109-ENG-38.

with columns s, betax, and betay defined at every element.
Then the data can be plotted with the sddsplot tool: sddsplot
-col=s,(betax,betay) aps.twi. Data from any SDDS data
file can be plotted in a similar way. A consistent data file proto-
col is the common thread that makes it possible for the members
of the toolkit to work together. Thus, to take advantage of the
SDDS toolkit, our control system tools read and output SDDS
protocol compliant data files.

If one didn’t use a toolkit approach, one would typically end
up with data and graphics postprocessors that work only for the
output of one physics code. Examples of these situations are too
numerous to list.

The SDDS toolkit will not be explained in detail in this paper,
as the toolkit is too extensive to fit. However, some of the SDDS
tools will be mentioned later.

III. EPICS Toolkit

The control system at APS is the Experimental Physics and
Industrial Control System (EPICS) [2]. In EPICS, a database
record is known as a process variable (PV), a term we’ll gener-
alize to mean any accelerator data obtained from EPICS.

Below is a list of EPICS tools in frequent use in beam studies:
� burtrb, burtwb, burtmath (Back-Up and Restore Tool):

Save and restore accelerator configurations, respectively,
in SDDS files.

� sddsmonitor, sddsvmonitor, sddswmonitor: Log PV
data at regular intervals. Optionally, the conditions for a
glitch or an oscilloscope-style trigger on a PV can be spec-
ified for the logging of data in a time window around those
events. These tools are extremely useful for correlating
data and diagnosing problems.

� sddsexperiment, sddsvexperiment: Vary PVs, and mea-
sure PVs with averaging. These tools require an input file
of namelist-type commands describing the PVs to vary and
measure. The results are written to a file which can, for ex-
ample, be plotted directly using the sddsplot SDDS tool or
be processed by one of the SDDS least-squares-fit tools.

� sddscontrollaw: Analogous to the term in control theory,
this program uses a matrix and a list of PV readbacks (out-
puts) as a vector to calculate new setpoints of PVs (actu-
ators). Suppose that Ri is a vector made from the list of
readbacks at time index i, M is the correction matrix, and
Si is the vector of setpoints at time index i, then sddscon-
trollaw computes the new setpoints with Si+1 = Si �

MRi. (The minus sign is present to indicate a correction.)
The procedure can be repeated at a specified time interval.

� squishPV: Tweaks a list of PVs (e.g. correctors) to mini-
mize the sum of another list of PV values (e.g. BPM read-
backs). An SDDS input file provides the lists of PVs. The
program tweaks one PV at a time, and leaves the tweaked
PV at the value that gives the smallest sum for the readback
PVs’ absolute values. The procedure is naturally slower
than sddscontrollaw’s which utilizes a correction matrix.
However, the squishPV method is more robust in that it

works in the presence of gross readback offsets and errors,
and in ignorance of response matrices.

These tools are very general. They don’t even presume that
an accelerator is being controlled. Scripts of command-line
tools written to work for one accelerator at APS have been eas-
ily adapted to work with another.

The SDDS and EPICS toolkits are accessed through the com-
mand line and do not use graphical user interfaces (GUIs), and
for good reason. In our experience, the alternate use of mouse
operations and keyboard input, the hallmark of GUI, is an im-
pediment rather than an advantage to accomplishing any serious
work. In addition, sequences of command lines can be put into
a script, which isn’t possible with GUIs.

The usefulness of these tools emerges when a few applica-
tions are given in the next section.

IV. Applications

A. Optical Function Measurements

In commissioning a beamline or storage ring, one verifies
that the optics matches the model by making beam response
measurements, that is, measuring the response of BPM readings
as a function of steering magnet settings.

In the PAR, such measurements have been used to improve
the optical model [3]. In the storage ring, a first turn trajectory
beam response measurement has so far been used to identify
grossly problematic quadrupole magnet supplies.

The beam response measurement starts with sdds-
experiment with BPM readbacks as the measured PVs and a
corrector power supply current setpoint as a variable PV. The
slopes of the sddsexperiment output data—obtained with the
tool sddsslopes—give the beam response.

The PAR measurement will be demonstrated as an example.
The command which runs sddsexperiment for the PAR correc-
tor P1H1 is “sddsexperiment P1H1.exp” where the command
input file P1H1.exp is shown below.

&measurement control_name = "P1P1:x",
column_name="P1P1:x", units=mm
number_to_average = 5,

&end
&measurement control_name = "P1P2:x",

column_name="P1P2:x", units=mm
number_to_average = 5,

&end
... (repeat the above for the rest of BPMs)
! do first corrector in PAR
&variable control_name = "P1H1:CurrentAO",

column_name="P1H1", units="A",
relative_to_original=1,
index_number = 0, index_limit = 5,
initial_value = -2.0, final_value = 2.0,

&end
&execute

outputfile = "P1H1.sdds"
post_change_pause=3
intermeasurement_pause=0.5

&end

The measurement command requires the fields
control name and column name. The control name field gives
the name of the PV (i.e. P1P1:x) that is read. The name of the
column name field will be given to the measurement data in the

output file. Having the flexibility of naming data columns is
useful when a PV name is not very descriptive. The other fields
are self-explanatory. The variable command shown here has
four additional fields. They instruct the program to vary the PV
P1H1:CurrentAO from -2 A relative to the original value to +2
A relative to the original value in five equal steps. The execute
command specifies the SDDS output file and the pause time in
seconds between measurements and variable changes. The out-
put file contains column definitions for all measured or varied
PVs and additional columns for the standard deviations, if re-
quested in the measurement definitions. The data file consists
of one data page with one row of data for each variable step.

The beam response to one corrector is obtained with a com-
mand as simple as: “sddsslopes P1H1.sdds P1H1.slopes -
independentVariable=P1H1”.

As an aside, sddsexperiment allows the variation of more
than one variable at a time. Variables can be varied on a multi-
dimensional grid by assigning increasing integer values for
index number, starting with 0, for each independent variable.
This feature has been used in making a longitudinal phase space
scan of the injection efficiency into the PAR.

Another feature of sddsexperiment is the shell execution of
scripts in between measurements or changes to a PV. In general,
these scripts prepare some accelerator system for measurement
or change. This allows the design of a relatively complex exper-
iment. For example, a script can be used to capture and process
beam images for beam size measurements.

B. Generalized Feedback Control

A generalized feedback control was required to compensate
the drift in the energy of the linac beam feeding into the PAR.
For many months of running, the linac beam energy drift ex-
ceeded or was equal to the energy aperture of the PAR (� 1%).
As a result, the injection efficiency into the PAR varied with
time, and this made beam studies difficult. Since the energy
drift was SLED cavity temperature related and therefore slow,
the compensation was done with the program sddscontrollaw
running on a workstation.

The first step of the general procedure is to identify the read-
back PVs and the control PVs related to the control problem.
Then a linear response matrix of the readback PVs as a function
of control PVs is measured, as described in the last section. The
correction matrix required by sddscontrollaw is the inverse of
this response matrix, and is computed by sddspseudoinverse,
a generalized matrix inverter using the SVD method. The pro-
gram sddscontrollaw is then applied with the correction ma-
trix.

These steps are applied to the linac energy control. There are
four BPMs in the beamline (LTP) transporting the linac beam
to the PAR. Three of these are in non-zero dispersion loca-
tions (there is one bending magnet in the LTP following the first
BPM). With all these BPMs, one can determine both the energy
offset and the trajectory error, and correct for both. In control-
ling the linac beam energy there are many direct “knobs” avail-
able, such as pulse forming network voltage and rf drive. How-
ever, they have a slow response because they are motor driven.
They are non-linear as well. Therefore we selected the SLED
phase reversal timing variable for one of the linac sectors be-
cause this variable is roughly linear within its useful range, and
its effect is prompt. In choosing the correctors for trajectory
correction, we eliminate those that mimic the energy knob, such

as the LTP bending magnet, and any horizontal corrector close
to it.

The following UNIX shell script was used to produce the cor-
rection matrix for the horizontal plane in the LTP:

#!/bin/csh
set correctorlist = \

(LTP:H1 LTP:H2 LTP:H4 L5:SledTiming)
foreach corrector ($correctorlist)

sddsexperiment $corrector.exp
slopes $corrector.sdds $corrector.slopes \

-independentVariable=$corrector \
-excludeColumns=Time,$corrector

end
sddscombine *.slopes LTP.R12.trans -merge
sddsconvert LTP.R12.trans \

-rename=col,IndependentVariable=CorrectorNames
sddstranspose LTP.R12.trans LTP.R12
sddsconvert LTP.R12 -rename=col,RowLabels=BPMNames
calculate inverse
sddspseudoinverse LTP.R12 LTP.InvR12 \

-minimumSingularValue=0.01
sddsconvert LTP.InvR12 \

-rename=col,RowLabels=CorrectorNames
exit

The response of the LTP BPMs to the correctors and the
SLED phase reversal timing variable were measured with sdds-
experiment. The files ending in .exp are user-supplied and are
similar to the file P1H1.exp in the previous subsection. The data
was processed by sddsslopes to produce files of slopes with
respect to the actuator setpoints. The tool sddscombine com-
bines these files to form a 4x4 matrix file. Renaming of columns
(with sddsconvert) after some toolkit operations is necessary
so that the user can keep track of the physical significance of
the data. With the minimumSingularValue option in sddspseu-
doinverse, one can throw away singular values that are small
relative to the largest one.

The command that executes sddscontrollaw is
“sddscontrollaw LTP.InvR12 R12-feedback.out
-timeInterval=6 -steps=30000 -gain=0.75
-controlQuantityDefinition=LTP:H.def -
testValues=LTP:H.tests”. R12-feedback.out is an SDDS
file logging all PV values during the execution. The gain value
is the fraction of correction to be applied at every step. The op-
tion control_quantity_definition requires a user-defined
file which has cross references of column names to the actual
PV names. This file is usually generated by an instruction in
the sddsexperiment command file whence the correction ma-
trix column names originate. To add robustness to sddscon-
trollaw, an input file describing tests for a list of PV values can
be specified on the command-line to suspend sddscontrollaw
temporarily. The file LTPH.tests contains tests of beam inten-
sity and of rf power to the linac sections.

C. Orbit Correction

sddscontrollaw can be used for conventional orbit correc-
tion. In this case, the number of steps only needs to be a few.
For PAR, the correction matrix was first derived from a mea-
sured beam response matrix rather than the model response ma-
trix since, early in the commissioning period, we were uncer-
tain of the tunes and of the calibration of the BPMs. By view-

ing the beam response data with sddsplot we were able to de-
tect bad BPMs and correctors, which were then easily removed
from the response matrix data file by referring to their names
using SDDS utilities. The orbit in the PAR was corrected very
quickly with hardly any beam time wasted on debugging the
simple scripts and command files.

D. Other EPICS Applications

Mention should be made of other EPICS applications that
have been written, not as tools, but as specialized programs to
solve specific problems, such as the program controlling and
correcting errors of the APS booster ramping power supplies
[4]. These applications write out SDDS-protocol compliant
data files, in order to take advantage of the SDDS toolkit.

V. Acknowledgement

Though the EPICS tools described here have many authors,
most described here were conceived or written by M. Borland.
All APS commissioning team members contributed to these
tools by their suggestions for improvements and options.

VI. References

[1] M. Borland, “A Self-Describing File Protocol for Simula-
tion Integration and Shared Postprocessors,” these pro-
ceedings.

[2] L. R. Dalesio, M. R. Kramer, A. J. Kozubal, “EPICS Archi-
tecture,” in ICALEPS, pp. 278–281, 1991.

[3] M. Borland, “Commissioning of the Argonne Positron Ac-
cumulator Ring,” these proceedings.

[4] J. A. Carwardine, S. V. Milton, and D. G. McGhee, “Perfo-
mance of the Ramping Power Supplies for the APS Booster
Synchrotron,” these proceedings.

