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Abstract Y

In a previous work the eigenmodes of a muffin—tin structure Iim% %
ited with lateral electric walls were calculated using the mode } Syt - e Q/2

matching technique. Now a modulated off axis beam is intro 2a |
duced and the beam induced fields, as well as the longitudi- | [5EF condifere”

<

0 X
boundary conditions
nal coupling impedances are calculated. Furthermore, in ord N

to get the fields in case of the open structure, the discrete st
of modes in the field expansions was replaced by a bootis Figure 2. Charg€)/2 travelling in a parallel—plate waveguide.
spectrum. The appearing Fourier integrals are determined by

means of the residuum calculus.

In the frequency domain the magnetic field produced by this
charge aty = a can be written as the Fourier integral
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In [1] an analytical solution based on the mode matching * Ar S
technique was proposed for calculating the fields in a peri-
odic muffin—tin structure. In order to obtain a discrete set of 5
modes in the drift region, a closed structure with electric walls _ k- 4 V7= 1 oY
atz = +(w + d)/2 was assumed. If one chooses the distahce o] ’ 1-p% 7 c
large enough, the influence may be neglegible for the resultin I . .
acgelerating mode, but not for t)rqe defle?:tir?g mode, i.e. the d\/\éﬂere the upper signis valid for magnetic and the lower for elec-

. : ' : Lo fﬂc boundary conditions at = 0. Solving the Fourier integral
persion relation for the deflecting mode depends strongly on % € . :

i : Yy means of the residuum calculus one gets a different formula-
position of the electric walls. For example,df— oo one can .

tIO][‘I

expect that the cut—off frequency goes to zero. The purpose 0
the present paper is the extension of the previous analysis to an _ Q ik, . [ cospidy o]
open structure (Fig. 1). Due to the lack of boundary conditions HyV = -e 7 Z(_l) sin p;idy € (2)
in z—direction, the fields in the drift region are now represented :
by a continuous spectrum of waveguide modes. The solution of

— 00

this problem can be derived by utilizing the Fourier transform in/\ . k- ? ) @2i-1)n/2a, ma
combination with the mode matching technique. A\ 3 b= ir/a, el.
yl cavity region y which will be used as a source term in the following .
%% % 3
/ g [Il. THE SCATTERED FIELD PRODUCED BY
I [Fegion _ég_ij —®; t.:——'é ————— THE CAVITIES
— === ‘ Rl NN —@— TR 3 The field in the cavities can be determined in terms of stand-
Nwﬁ § ing wave functions as was done in [1]. Hence, in this paragraph
& N we will only discuss the field expansion in the drift region 1,

. o which can be written in the form
Figure 1. Transverse and longitudinal cut of the structure under

consideration. ©0
7
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Il. SOURCE FIELD IN THE DRIFT REGION

In order to determine the beam coupling impedances, we nows, x H{") = 9 > / Fo(& 2, 2)V! (€ y)A, €)YV de

introduce a charged particlg/2 travelling off axis ate = dz, 2m
y = Jdy with constant velocitw = gc e, in a parallel-plate .
waveguide. In the plang= 0 we furthermore assume magnetic (¢ ) “VrEyFVi &y ., - 9V

or electric boundary conditions (Fig. 2). Vi€ a) £ Vi (6,0) 7" KM€ Oy



VE(E,y) = exp {:Fj K;p(g)y} N I Ny -y IV. FINITE NUMBER OF CELLS

) The analysis described above is valid for an infinite periodic
yD(¢) = Kn'(&)/k  TE, . B = k + 2mn structure. With a little modification however, we can use it to get
" K/ (), TM, B g+t  results for astructure consisting of any finite number of cells. If

we rotate the direction of the beam travelling along the structure

Fo(&, @, 2) =je Tifnzter) { Pneq=Ce. Ty by an angle ob0° around the y-axis, and if we choose zero
—Cer = foes , TM, phase advance per cell, i.8, = 27n/(g + t), then we obtain

As can be seen, the field is again decomposed in space harmba{ields produced by one single cell (Fig. 4).

ics with phase constants, and splitted into transverse electric

(I'E,) and transverse magneti€ {/,) components w.rg = a. A y
The upper sign ir;, corresponds to a magnetic wall and the«/f/z’«ga«/vz* % - :I‘ %
lower to an electric wall iy = 0. The main difference in Eq. — e e
(3) and the analogous field expansion in [1] is, that we now have— _ . Syrstic wai —=1 % 0 2b—2a >
to deal with an unknown continuous spectruim(¢). T & @__T N
Due to lack of space, we will give only a brief summary of
our analysis without mathematical details. Using the identity
g+t o Figure 4. Changing the beam direction
/ / F(& z,2) F (¢ z,2)dede = As can be seen in Fig. 4, this manipulation leads to magnetic
0 —oo boundary conditions in the planes= —¢/2 andz = g + /2,
5 5 . if the beam is located at = ¢/2, y = dy. Of course, the
=2m(g +1) {ﬁn +¢ }‘5(5 —£)dy (4) meaning of dimensiop has to be exchanged hy and vice

and satisfying the boundary condition for the electric field, orversa. Adding more cells in—direction is straightforward and
can express the unknown spectrutp(¢) in terms of the dis- leads to an increase of the number of linear equations by a factor
crete coefficients of the field expansion in the cavity region @f V, whereN is the number of cells. Clearly, the structure is
Substituting this spectrum into the Fourier integral of the magot exactly open. But it supports a TEM—wave, which radiates
netic field this integral can be written in the form in beam direction and causes losses similar to those in a fully
open structure.
L= ()"l -1 = (5)
V. NUMERICAL RESULTS

= (=" / fo(€)e —lElr— %) qe — / f.(€)e —lEl=+3) q¢ After solving the system of linear equations for the unknown
= = field coefficients the integral

—-Q Z(w) :/ Egl)(xzéx,yzéy, z)e_j%z dz (6)

giving the longitudinal coupling impedance was evaluated,

x< w/R wherez; = 0, zo = ¢ + ¢t for an infinite periodic structure and
x<—w/2 212 = Foo for a finite number of cells. Varying = v/c and
L LmT looking for the peaks in Eq. (6), one obtains the dispersion rela-
v tion which is plotted in Fig. 5 for the first deflecting mode, and
» O EjBn compared to the closed structure analyzed in [1]. Obviously, the
Rei © L E g cut—off frequency goes to zero and there is no beam environ-

ment interaction fo? = 1. Fig. 6+7 show the impedance of
one single cell with electric or magnetic boundary conditions in
y = 0, respectively. Below the cut—off frequency three sharp
resonances can be observed. The following table gives their
values in comparision to results from the FD computer code
The functionf, (¢) has poles at = 77, { = &j G, GDFIDL [3].
& = £/k*— 2 — p?. It can easily be shown, that the poles [Gsz] (analytic) | 120.0| 223.4| 243.1
&= =% b5n qlo not contribute, because they cancel each other I (GDFIDL) | 120.1| 2232 | 2418
after summing?' &, and 7'M, modes. Fig. 3 shows the lo- [GiHz]
cation of poles in the complex plane, and the integration path,The low frequency behaviour of the impedance in case of
where a complex wave numbgrwith a small imaginary part electric boundary conditions ip = 0, which allow the exci-
was assumed. After solving the integral Eq. (5) by means of ttagion of a TEM field, is similar to that calculated in [2] for a
residuum calculus, and satisfying the required continuity of tlkeaxial TEM structure, i.e. the imaginary part goes nearly lin-
magnetic field, one finally gets a system of linear equations fear with frequency and is much greater than the real one. Fi-
the field coefficients in the cavity region. nally, in Fig. 8 the splitting up of the lowest cavity resonance

I
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Figure 3. The location of poles in the complex plane.




in a ten cell structure is demonstrated, where a small imaginary 0.0
part of the wavenumbet = w./zp + j - 10~* was assumed.
As can easily be recognized, the strongest resonances occure at 00004
about122 GHz, which agrees very well with thgg accelerating E
mode from the dispersion relation in [1]. S. ooy
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