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Abstract

The second-order FD-TD algorithm developed by Yee has been
successful in wakefield calculations. However, unphysical re-
sults can be obtained in wakefunction calculations of very short
bunches. A detailed study of this problem is presented in this
paper. It is found that the truncation error inherent in the second-
order Yee algorithm of standard codes is frequency dependent
and is inadequate for wakefield calculations of short bunches
which produce wakefields with high frequencies. A fourth order
approach extending the work of J. Fang is presented, which re-
duces the truncation error two orders of magnitude. The results
of the wakefunctions calculated by use of this fourth-order FD-
TD algorithm are presented and compared with the results of the
second-order FD-TD algorithm.

I. INTRODUCTION

Wakefunctions describe energy loss and transverse momen-
tum change which a particle experiences when passing through
a structure. Numerical calculations typically use a linear finite-
difference time-domain (FD-TD) algorithm, known as the Yee
[1] algorithm, to solve the Maxwell’s equations. The algorithm
has second order accuracy and has been widely used in numerical
modeling of electromagnetic wave (microwave) interactions with
arbitrary structures and beam-cavity interactions. The algorithm
usually gives very good results by choosing an appropriate mesh
and time step size. In the application of modeling microwave
structures, good accuracy can be obtained by having the mesh
size one tenth ofλmin [2]. In the application of wakefields calcu-
lations, good accuracy can be obtained by having the mesh size
one fifth ofσ , whereσ is the rms bunch length of the driving
particles, assuming a gaussian distribution.

Problems arise when the fields have high frequency compo-
nents. These were encountered in the wakefields evaluations of
the CEBAF 5-cell cavities. The CEBAF beam has very short
bunch length. The spectrum of the current carried by the bunch
contains very high frequency components. The wakefunctions
calculated by use of TBCI and ABCI have unphysical oscillations
even if the mesh size is one fifth of the rms bunch length.

It is found that these unphysical oscillations are due to the
accuracy of the Yee algorithm and are frequency dependent. To
solve the problem, we, extending J. Fang’s work [3], developed
a fourth-order finite-difference formalism in the cylindrical co-
ordinate system. This formulae have accuracy to the forth order.
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Figure. 1. The fields defined in ther − z plane.

II. THE SECOND-ORDER FD-TD ALGORITHM

In this section, we present the FD-TD formulae in the cylin-
drical coordinate system used in TBCI [4]. The second-order
FD-TD algorithm approximates the first-order time and spatial
derivatives by linear finite differences. On the time axis, theH
fields are evaluated a half time step ahead of theE fields, which
gives a centered-difference analog to the time derivatives. Let
theH fields be evaluated at timesn1t and theE fields at times
(n+ 1/2)1t , n =1, 2, 3.... The Maxwell’s equations become

H n+1 = H n − 1t

µ0
∇ × E n+1/2 (1)

E n+3/2 = E n+1/2+ 1t

ε0
∇ × H n+1− 1t

ε0
Jn+1 (2)

The fields are treated analytically in theφ coordinate, and are
discretized in ther − z plane as shown in Fig. 1. The first order
derivatives in the curl operators in Eqs. (1) and (2) are replaced
by linear finite differences

∂(E, H)

∂xi
→ (E, H) j+1− (E, H) j

1xi
(3)

The arrangement of theE andH fields in Fig. 1 provides a natu-
ral geometry which fulfills the centered-difference analog to the
spatial derivatives of the curl operators in Maxwell’s equations.
The centered-difference scheme has accuracy to the second order.

To calculate the wakefield of a particle bunch, the fields are
initially set to zero,E 1/2 = 0, H 0 = 0, J0 = 0. The total
electromagnetic fields can be calculated iteratively over these
difference equations through the leapfrog process set forth by
the centered-difference in the time axis.



             

Figure. 2. The cross section of the CEBAF 5-cell cavity.

The wakefunctions of the CEBAF superconducting cavity are
calculated to demonstrate the shortcomings of the second-order
FD-TD algorithm. The cross section of the CEBAF 5-cell cavity
is as shown in Fig. 2. The mesh size used in the calculations
is one fifth of the rms bunch length. The beam is on the axis.
The wake is integrated at the beam pipe radius. The dashed line
in Fig. 3 shows the longitudinal wakefunction of modem = 0
for a 0.5 mm (rms) beam. The dotted line is the charge distri-
bution. The wakefunction has strong oscillations starting from
the tail of the bunch. These oscillations are unphysical since the
strength is stronger than the wakefunction in the bunch region.
The wakefunction calculated by TBCI for a 3 mm(rms) beam
does not have the same problem, Fig. 4. This suggests that the
error is bunch length dependent.

III. FOURTH-ORDER FD-TD ALGORITHM

Further studies showed [5] that the unphysical oscillations of
the wakefunction in Fig. 3 is due to the truncation error of the
second-order FD-TD algorithm. In principle, the problem can
be solved by using a finer mesh. This may be impractical due
to the limitation of computer memory. In this section, we derive
a fourth-order FD-TD algorithm in the cylindrically symmetric
coordinate system. The Yee lattice is used to define the fields.
Fourth order accuracy is accomplished by including up to the
third order derivatives of the fields in the Taylor expansions.

A. Fourth-order FD-TD algorithm

Expanding theE and theH fields to third order in time, we
have

H n+1 = H n +1t
∂H n+1/2

∂t
+ 1t3

24

∂3H n+1/2

∂t3 + O(1t5) (4)

E n+3/2 = E n+1/2+1t
∂E n+1

∂t
+ 1t3

24

∂3E n+1

∂t3 + O(1t5) (5)

Replacing the time derivatives in Eqs. (4,5) by the curl operators
defined by the Maxwell’s equations, we have

H n+1 = H n − 1t

µ0
∇ × E n+1/2− 1t3c2

24µ0
∇ × ∇2E n+1/2

+1t3c2

24

∂

∂t
(∇ × Jn+1/2)+ O(1t5) (6)

E n+3/2 = E n+1/2+ 1t

ε0
∇ × H n+1+ 1t3c2

24ε0
∇ × ∇2H n+1

−1t

ε0
Jn+1+ 1t3

24ε0

(
c2∇ × ∇ × Jn+1

−∂
2Jn+1

∂t2

)
+ O(1t5) (7)

The first order derivatives involved in the curl operators are eval-
uated to the fourth order finite-difference as

∂Hz,k+1/2

∂z
= Hz,k+1− Hz,k

1z
− 1z2

24

∂3Hz,k+1/2

∂z3 + O(1z4) (8)

B. Frequency dependence of the higher-order terms

For a given mode, assuming that the fields havee− jωt time
dependence, the third order terms in Eq. (6) have the following
form (similarly for theE field in Eq. (7))

1

(
1H

1t

)
= − j

1t2ω3

24
H − 1z2

24µ0

(
∂3Eφ
∂z3 r0

−
(∂3Er

∂z3 − (k2
r +

2

r 2 )
∂Ez

∂r
+ k2

r

r
Ez

)
φ0

−
(
(rk2

r −
1

r
)
∂Eφ
∂r
+ 2k2

r Eφ
)
z0

)
(9)

Except for the phase difference, the third order derivatives
respect toz can be written ask3

z(E, H) and the first order deriva-
tive respect tor is approximatelykr (E, H). These higher-order
terms are, therefor, proportional toω(k1z)2, or, ω(1z

λ
)2. In

general,(1z/λ)2 is small and is usually used as a measure of the
magnitude of the contributions from the terms related. The situ-
ation here now is different, the coefficients of(1z/λ)2 linearly
increase with the frequency. At high frequencies, these terms
may not be “small” any more. Furthermore, the accumulated ef-
fects of these terms scale asLcavi t yω(k1z)2 in the wakefunction
calculation. The higher-order terms thus become more important
in the wakefunction calculation of long structures.

In the second-order Yee algorithm, these terms are the low-
est order truncation errors and are frequency dependent. Con-
sider the case of wakefields driven by a gaussian bunch; the
profile of the frequency spectrum of such a bunch is also gaus-
sian. Frequencies that have lower magnitudes in the spectrum
excite wakefields with lower amplitudes. The wakefields excited
by the frequencies higher than a certain frequency will be neg-
ligibly small. Assuming this rolloff frequency is the frequency
with a magnitude of 1% in the spectrum. The corresponding
wave length of this frequency isλ = 2σ . Let the mesh size be
one fifth ofσ , that is1z/λ = 0.1. This is the typical number
suggested in [2] for numerical simulations of microwave prop-
agation and in [4] for wakefield calculations. This number has
been accepted as a general rule in the discretization of Maxwell’s
equations so that the meshes would have enough frequency res-
olution. This works fine in the calculation of the wakefields of
long bunches where the rolloff frequency of the excitation of the
wakefields is low. Good accuracy can be obtained with the choice
of 1z= σ/5. In the calculation of wakefields of short bunches,
the fields contain higher frequency components. The quantity
Tω(1z

λ
)2, whereT is the total integration time, may no longer

be small even if1z = σ/5 or1z/λ = 0.1 is retained since it
depends linearly on the frequency and the integration time. The



          
rule of1z= σ/5 is no longer valid. This is what we have seen in
the examples studied in section II. Using smaller mesh size can
improve the accuracy. But reducing the mesh size will increase
the number of mesh points by many fold, for example 4 fold in
the 2-D problem and 8 fold in the 3-D problems if the mesh size
is halved. Computer memory becomes a problem.

The fourth-order FD-TD algorithm can reduce the truncation
error to the fourth order

ω

(
1z

λ

)4

(10)

Even though it is also linearly proportional to the frequency, the
extra powers of1z/λwould greatly reduce the magnitude of the
error. If the highest frequency of the excitation is not very high,
the terms of the fourth order and higher of1z/λ are small.

C. Wakefunctionss calculated by fourth-order FD-TD algorithm

The fourth-order FD-TD algorithm was implemented in TBCI
for testing. The results of the wakefunctions of the CEBAF 5-
cell cavity of a 0.5 mm bunch are shown in Fig. 3 by the solid
lines. The dashed lines are the results of the second-order FD-TD
algorithm. The same mesh size is used, which isσ/1z=5. No
oscillations are observed in the fourth order result. The errors
are suppressed.

IV. CONCLUSION

Higher-order truncation errors depend linearly on the fre-
quency, and accumulate with time. The fourth-order FD-TD
algorithm reduces these errors and is good for calculating the
wakefields of sub-millimeter bunches. The fourth-order FD-TD
algorithm takes more than six times longer CPU time than the
second-order Yee algorithm. In exchange, there is no extra com-
puter memory required.
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Figure. 3. Wakefunction of the CEBAF 5-cell cavity,σ =
0.5 mm. Dashed line: the result of the second-order FD-TD
algorithm; Solid line: the result of the fourth-order FD-TD al-
gorithm.
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Figure. 4. Wakefunction of the CEBAF 5-cell cavity,σz =
3 mm, second-order FD-TD algorithm.


