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The new versions of  the SuperLANS code for
evaluation of monopole modes in axisymmetric cavity with
lossy filling and of multipole modes in axisymmetric cavity
with inhomogeneous ferrite and dielectric filling are
presented.

I. INTRODUCTION

The code SuperLANS [1] is developed in two directions:
- a code CLANS is made to calculate monopole modes

in axisymmetric cavities with partial lossy dielectric and
ferrite filling;

- a code SLANS2 is made to calculate multipole modes
in axisymmetric cavities with partial dielectric and ferrite
filling.

II. CLANS

Being the new version of SuperLANS, the code CLANS
is developed to calculate monopole modes in axisymmetric
cavities with lossy dielectric and ferrite filling,  providing:

- evaluation of a cavity with dielectric and ferrite with
loss tangent tgδ≤1;

- solution of self-consistent problem for frequency
dependent dielectric permittivity and magnetic
permeability.

A. Mathematical formulation

 To describe lossy filling with loss tangent tgδ≤1, the
complex permittivity and permeability are used. The
electric and magnetic fields are also complex. The
equation for the magnetic field, for example,  for TM wave,
is the same one as for SuperLANS [1]:
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The equation of such form provides the boundary
condition on the dielectric and ferrite surfaces [2].  We use
the coordinate system (z, r2/4) as in SuperLANS to improve
solution near axis.

B. Solution method

The equation (1) is solved by the finite element method.
We use four corner eight nodes isoparametric elements.
Algebraic system of equations for node field values is
produced by Galerkin method. To find several modes
simultaneously in arbitrary spectrum domain, we use
subspace iteration method with frequency shift.

If the permittivity and permeability of lossy filling
depend on frequency, the self-consistent problem is solved.
The iteration is produced in the next way. The solution for
fixed permittivity and permeability is used as an initial
approach. Then for this frequency the new values of

permeability and permittivity are chosen. Using this values
of permittivity and permeability, we find the new frequency
by the method of inverse  iteration  with frequency shift,
which provides the effective separation of searched mode.
We use the frequency of the previous iteration as a shift. As
a rule, several iterations are enough to obtain the self-
consistent solution. Iterations are produced automatically, if
a file with permittivity and permeability frequency
dependencies is prepared.

There are two versions of code for PC and VAX  at
present.

C. Results.

The code was tested on pillbox cavity with
homogeneous losses filling. For cavity with sizes r=1cm
and l=1cm with filling material permittivity and
permeability ε=1, µ=1 and loss tangent tgδ=1, with mesh
5*5 the fundamental mode frequency calculation accuracy
is 0.01%.

The VAX version of the code is used for calculation of
superconducting cavity with ferrite HOM damper in Cornell
University [3]. The force lines of real and image parts of
electric field for fundamental modes are shown  on Fig. 1
and Fig.2. The force lines  of real and image parts of
electric field for “ghost” mode are shown on Fig.3 and
Fig.4. This mode is obtained as a solution of self-consistent
problem and connects to ferrite loading.

  III. SLANS2

The code SLANS2 is developed to calculate the
multipole modes in axisymmetric cavities with partial
dielectric and ferrite filling.

A. Mathematical formulation

Unlike the scalar problem for monopole modes the
problem of multipole mode calculation is a vector problem.
In our case we can write usual wave equation, for example,
for magnetic field:
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To eliminate spurious modes we additionally use the
equation:

grad div H⋅ =( )µ
r

0                          (3)

Combining (2) and (3), we obtain the following
equation for partially homogeneous filling:
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Rewriting this equation for field components and
excluding  ϕ-component using (3), we obtain two equations
for Hz  and  Hr  without the potential solutions [4], [5].

Boundary conditions for tangential and normal
components of magnetic field on a metallic surface have
the following form [6]:
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where K - is surface curvature in the axial cross section.
Solving eigen value problem for two transverse

components of magnetic field we can reconstruct ϕ
component of magnetic field and all components of electric
field from Maxwell’s equations.

SLANS2 also permits to solve eigen value problem for
transverse components of electric field. In this case
equations have the same form, except boundary conditions
on a metallic surface, which have the following form [6]:
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where nr is a radial component of the unit vector normal
to the boundary.

Unlike SuperLANS and CLANS, we use the usual
coordinate system (z,r) for SLANS2.

B.Solution method

To produce finite element mesh, we used the same
mesh generator as for SuperLANS. Galerkin method is used
to obtain the algebraic system. Unlike SuperLANS the
matrix of system is not symmetric, so we must store the
whole band of matrix.

To satisfy the boundary condition on a metallic surface
(5) we use the method described  in [6]. We rewrite
discrete equations on metallic surfaces for normal and
tangential field components: Hn, Hτ or En, Eτ. For this, we
use a local  matrix of rotation for the node field values on
metal.

On ferrite  or dielectric surfaces the problem of
satisfying the boundary condition is more complicated.
Only the tangent field components  Hτ and Eτ  are
continuous and the normal components Hn and  En have
break. So we rewrite the discrete equations for Bn, Hτ  or
Dn, Eτ  on ferrite or dielectric surfaces to satisfy the
boundary conditions. This method permits to use a regular
finite element mesh as in SuperLANS.  

To calculate several modes  simultaneously  in arbitrary
spectrum domain, we use the subspace iteration method.  

C.Results

The spherical  cavity with  concentric spherical
dielectric or ferrite insertion was used as a test. The
convenience of this test  is that it is possible to compare
calculation results of SuperLANS and SLANS2, because
monopole modes of SuperLANS  are dipole modes of
SLANS2  rotated by 90°. For the same meshes the
differences between SuperLANS and SLANS2 results are
less than 0.015%.

The code  SLANS2  is used to calculate cavities for
RF generator  Magnicon [7]. The operating modes in this
device are multipole. The field maps for two different
modes for Magnicon penultimate cavity  are shown on
Fig.5 and Fig.6.

The code was also used to calculate a variant of the
waveguide window for VLEPP klystron [8]. The window
consist of a ceramic disk, which attached to a rectangular
waveguide by the conical parts. The dipole modes are
excited in such axisymmetric cavity. The field maps for
two different modes are shown on Fig.7 and Fig.8: the first
one is the “ghost” mode, which exist in the ceramic disk
only, the second mode is one of the propagation modes.

IV. CONCLUSIONS

The codes CLANS and SLANS2, which are  the
advancement of the SuperLANS code for axisymmetric
cavities, have proven to be very powerful tools for the
analysis of many RF design problems.

Futher development will be creation of the code for
calculation of multipole oscillation in cavities with lossy
filling.
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Figure 1: Real part of electric field of the operating mode
of superconducting cavity.

Figure 3: Real part of electric field of  the “ghost” mode of
superconducting cavity.

Figure 5:  Field map of cophasal mode of the Magnicon
penultimate cavity.

Figure 7: Field map of “ghost”mode in RF-window.

Figure 2: Imaginary part of electric field of the operating
mode of superconductive cavity.

Figure 4: Imaginary part of electric field of the “ghost”
mode of superconductive cavity.

Figure 6: Field map of  counterphasal  mode of the
Magnicon penultimate cavity.

Figure 8: Field map of propagation mode in RF- window.


