
Introduction

Numerous computer codes calculate beam dynamics of
particles traversing an accelerating gap. In order to carry out
these calculations the electric field of a gap must be determined
[1,2]. The electric field is obtained from derivatives of the sca-
lar potential, which solves Laplace’s equation and satisfies the
appropriate boundary conditions. An integral approach [3,4]
for the solution of Laplace’s equation is used in this work since
the objective is to determine the potential and fields without
solving on a traditional spatial grid. The motivation is to
quickly obtain forces for particle transport, [5] and eliminate
the need to keep track of a large number of grid point fields.
The problem then becomes one of how to evaluate the appro-
priate integral. In this work the integral solution has been con-
verted to a finite sum of easily computed functions.
Representing the integral solution in this manner provides a
readily calculable formulation and avoids a number of difficul-
ties inherent in dealing with an integral that can be weakly con-
vergent in some regimes, and is, in general, highly oscillatory.

Formulation of the Scalar Potential Integral

The Laplace equation to be solved in cylindrical coordi-
nates for an accelerator gap is,

(1)

with the value of the potential prescribed at radius . For axi-
symmetry in cylindrical coordinates, a Green’s function is
obtained by first expressing the delta function in terms of a
trigonometric expansion [6]. The Green’s function is then
expanded in terms of the same functions used for the delta
function expansion, but with an unknown radial function

.

(2)

The equation solved by the radial function after specializ-
ing to axisymmetry, , is as follows.

(3)

The homogeneous version of Eq.(3) is the equation for the
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modified Bessel functions. It is thus solved by a linear combi-
nation of  and  that satisfy the zero boundary
condition at  and the derivative discontinuity condi-
tion. Inserting the appropriate  into Eq.(2), a  is
found which satisfies the necessary properties and is special-
ized to a region with a fixed radial boundary and thus a
Dirichlet boundary condition appropriate to an accelerator gap.

(4)

In Eq.(4)  is the minimum of ,  is the maximum
of , and both  and  are zero order modified Bessel
functions.

Before the accelerator gap the wall potential is  and
after the gap the potential is . The total potential is thus
constructed as the sum of a constant and an unknown scalar
function which is odd in ,

(5)

where  now solves Eq.(1). The integral solution for  is,

(6)

where Eq.(6) is a surface integral,  is the value of
the potential on the wall, and pipe radius normalized variables
are used, , , , and the normal-
ized gap width is . Along the wall beyond the
gap  the potential is constant with a boundary condition
of . For complete generality the
boundary condition in the gap where  is written as a
Fourier expansion,

(7)

where . Using Eq.(7) in Eq.(6) it is found that

 where,

(8)

is derived from the part of Eq.(6) having  and  is
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ẑ ŵ<
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from the gap where ,

(9)

From the definition  the field solution requires
derivatives of  and .

(10)

(11)

(12)

(13)

The complete gap solution can now be written in terms of
,  and their derivatives.

(14)
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0

∞

∫=

Cn x–( ) ŵ[ ]sin
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Integral Approximation Technique

The integrals needed to specify the solution in Eq.(14) are
given in Eq.(8)-(13). All the required integrals in Eq.(8)-(13),
have integrands consisting of a ratio of Bessel functions multi-
plying trigonometric functions. The method of obtaining the
integrals in this work is to first approximate the ratio of Bessel
functions and then integrate the resulting expressions. The
form of the ratio which is useful for , ,  and

 comes from the following expression,

(15)

where . The right side of Eq.(15) is an equivalent but
more advantageous way of representing the ratio of Bessel
functions, since the expression in parenthesis is a function that
begins at zero and rises to an asymptotic value. Consequently,
the approximation is to express the Bessel function ratio in
terms of a finite sum of exponentials raised to a negative
power.

(16)

In like manner the form of the Bessel function ratio for
 and  comes from the following expres-

sion.

(17)

Again the approximation is to express the Bessel function
ratio in terms of a finite sum of exponentials.

(18)

To illustrate what has been gained by the approximation,
the new form of  is examined in detail. Substituting Eq.(16)
into Eq.(8) yields,

where now  is expressed in terms of a sum of integrals. The
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fundamental integral is,

(19)

which depends on the normalized gap width, radial and axial
position. The important observation to make is that Eq.(22) is
the Laplace transform of . If an auxiliary
integral having a well known Laplace transform is defined,

(20)

it can be seen the parameter shifting property of the Laplace
transform gives,

(21)

Consequently  can be written entirely in terms of
.

(22)

In an identical manner to the treatment of , the Eq.(16)
and (18) approximations are inserted into Eq.(9) to Eq.(13) to
give approximations to those functions. In order to obtain these
functions it is necessary to compute integrals similar to
Eq.(19). As before these integrals can be derived from an aux-
iliary integral. In general there is a similar relation for the plus
and minus superscript integrals.

(23)

(24)

Determination of constants for series expressions

Having specified the integrals needed to calculate the func-
tions in Eq.(9) to Eq.(13), the gap solution in Eq.(14) is known
when the , , and  constants required by the fit func-
tions in Eq.(16) and Eq.(18) are determined. There are actually
two sets of constants that need to be determined, however each
set is obtained in the same manner, so the solution procedure
will only be discussed for the , , and  con-
stants. By solving a non-linear set of equations, both the ,
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and  constants can in principle be determined. The diffi-
culty with obtaining this solution is that the  constants
can be imaginary rather than strictly real. As a consequence,
the fit function then becomes exponentials multiplied by sine
and cosine functions, and this causes the fit function to be rip-
pled. To avoid this problem the  constants are specified
to be known positive real numbers. Heuristically the large val-
ues of  determine the fit near zero and smaller values
tend to have an effect over an extended range. The set of equa-
tions that then has to be solved for a particular radius is,

(25)

which is just  equations in  unknowns. In Eq.(25) the
asymptotic value is defined to be at , and,

The solution procedure for Eq.(25) is to first solve for a stan-
dard lower, upper matrix decomposition. This result only
depends on already specified  constants and is only done
once. It is then multiplied times the right hand side of Eq.(25)
for particular  values that can vary. In principle Eq.(25) can
be symbolically solved to obtain , however the
expressions rapidly get unwieldy for .

Conclusions

The solution of Laplace’s equation has been formulated in
an integral form using a cylindrical coordinate Green’s func-
tion. The integral form of the solution has been converted into
a finite sum of readily calculable functions. This derived solu-
tion avoids the difficulties of the original, weakly convergent
infinite integral with an oscillatory integrand. The main
approximation that has been used in the derived solution is to
write the finite sum in terms of Laplace integrals. In this frame-
work the solution is formulated for an arbitrary variation of the
electric field in the gap.
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