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Abstract

The design of a storage ring consisting of two identical 180-
degree bending arcs and two short straight sections is presented.
Each of the bending arcs is a four-cell fifth-order achromat de-
signed according to a recently developed theory about arbitrary-
order achromats. Instead of repetition of cells, which is widely
used in achromat design based on normal form theory, we uti-
lize cells which are obtained from the the original ones through
mirror imaging about the x-y plane, which corresponds to a re-
version. In our design, the second cell is the reversion of the first
one. The third and fourth cells are identical to the first and sec-
ond ones, respectively. Long term stability is studied through
high-order tracking using code COSY INFINITY [1].

1 Introduction

In the past few years, various third-order achromatic sys-
tems containing at least seven repetitive identical cells have been
found using normal form theory [2] [3] [4]. The number of bend-
ing magnets needed ranges from 7 to 300. Each solution requires
a specific number of cells depending on the choice of the tunes
of a cell.

By introducing mirror symmetry into the consideration, we
developed a new theory which requires only four cells and as
few as one bend per cell to obtain achromats of, in principle, ar-
bitrary orders [5] [6]. The use of mirror symmetry enables us
to choose from four kinds of cells, namely the forward cell (F),
the cell in which the order of elements is reversed (R), the cell in
which the direction of bend is switched (S), and the cell where
reversion and switching is combined (C). According to the the-
ory, the minimum number of conditions required for a four-cell
fifth-order achromat with an arbitrary forward cell are five for
the first order, four for the second order, fifteen for the third and
the fourth orders and thirty nine for the fifth order. The optimal
four-cell systems which require only the minimum number of
conditions are listed in Table 1, together with the first-order re-
quirements.

One of the possible applications of high-order achromats is
achromatic bending sections of accelerators. In this report, a
storage ring with two fifth-order achromatic bending arcs is pre-
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Systems Linear Conditions
F R S C (aj�) = 0, (xja) = (ajx) = 0
F R F R (aj�) = 0, (xjx) = (aja) = 0
F C S R (xj�) = 0, (xja) = (ajx) = 0
F C F C (xj�) = 0, (xjx) = (aja) = 0

Table 1: The optimal four-cell systems Additional linear condi-
tions are (yjy) = (bjb) = 0 or (yjb) = (bjy) = 0 for each one.

sented. The detail of the design is discussed in Section 2. In Sec-
tion 3, the repetitive stability is studied through tracking. Con-
clusions are given in Section 4.

2 Design of the Achromat

2.1 First- and Second-Order Design

In order to design an achromatic bending arc, no switched
(S) or switched-reverse (C) sections can be used. Thus, the
only choice is FRFR. The first-order layout should avoid large
changes in the beta functions in order to minimize nonlinear
aberrations; furthermore, there should be room for the insertion
of correction multipoles. Another consideration is that, if pos-
sible, the number of first-order conditions should be further re-
duced through symmetry arrangements inside a cell.

The result of these thoughts is shown in Figure 1, where the
180-degree bending arcs are achromatic. The forward cell it-
self also consists of two parts, where one is the reversion of the
other. This guarantees that at the end of it, (xjx) = (aja) and
(yjy) = (bjb). The building block of the arc is a FODO cell
consisting of a defocusing quad, a 5.625� bend, and a focusing
quad. All four FODO cells within one part of a cell are identi-
cal except the last one, which has an extra quadrupole for dis-
persion correction. So there are three knobs for the first-order
design which can zero (xjx), (aja), (yjy), (bjb), (xj�) and (aj�)
at the same time. Figure 2 shows that the beam moves around
the arc in a quite uniform manner avoiding large ray excursions
and beta functions.

According to the arbitrary-order theory, four independent
sextupoles are required to obtain a second-order achromat.
However, because of the fact that to the first order, the cell R



Figure 1: The layout of a storage ring with fifth-order achro-
matic bending arcs; the circumference is 1451:06 m; the tunes
are Tx = 0:03654, Ty = 0:03721.

Figure 2: The beam envelope and the dispersive ray of the hor-
izontal (top) and vertical (bottom) motion; emittance: 10� mm
mrad (horizontal and vertical); �E=E: 0:1%.

is identical to the cell F, a simplification is possible based on
Brown’s theory of second-order achromats ([7] [8]). In this the-
ory, it is shown that a second-order achromat can be achieved
by placing two pairs of sextupoles in dispersive regions and
cancelling one chromatic aberration in each transverse plane.
Therefore, a second-order achromat can be achieved on the arc
using two sextupoles per cell. In our case, it turns out to be
advantageous to split the sextupoles into symmetrically excited

pairs to ensure that up to the second order the second cell (R)
still is the reversion of the first.

2.2 Higher-Order Design

After the investment in a careful first-order layout, the
third-, fourth- and fifth-order corrections actually turn out to be
conceptually straightforward, even though they are computa-
tionally more demanding. In the whole process of nonlinear op-
timization, only two aspects seem to be worth considering. First,
the required multipole strengths are quite sensitive to the aver-
age distance among multiples of the same order. So, in order to
keep their strength limited, it is important to dimension the to-
tal size of the ring and the dispersive region sufficiently large,
as done in the previous section, and distribute multipoles of the
same order roughly uniformly.

Secondly, all the decapoles have to be placed in regions with
sufficient dispersion because all the fourth-order aberrations re-
maining after third-order achromaticity is achieved are of chro-
matic type. Thus it is advantageous to use a substantial disper-
sive region.

The combination of these considerations results in rea-
sonably weak multipole strengths for third-, fourth- and fifth-
order corrections. Table 2 shows that a fifth-order achromat is
achieved.

1.00 0.000E+00 0.000E+00 0.000E+00 0.0000E+00 100000
0.000E+00 1.00 0.000E+00 0.000E+00 0.0000E+00 010000
0.000E+00 0.000E+00 1.00 0.000E+00 0.0000E+00 001000
0.000E+00 0.000E+00 0.000E+00 1.00 0.0000E+00 000100
0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000 000010
0.000E+00 0.000E+00 0.000E+00 0.000E+00 33.63 000001
0.000E+00 0.000E+00 0.000E+00 0.000E+00 -38.31 000002
0.000E+00 0.000E+00 0.000E+00 0.000E+00 -11044 000003
0.000E+00 0.000E+00 0.000E+00 0.000E+00 -2.124E+05 000004
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.9870E+09 000005
---------------------------------------------------------

Table 2: The fifth-order map of the arc (Zero means smaller than
2E-01.)

3 Repetitive Stability

With the arc at hand, a storage ring is designed, which con-
tains two identical achromatic arcs and short straight sections.
Each of the straight sections consist of two FODO cells with
weak quads (less than 0.1 kG/cm as opposed to 1 kG/cm in the
arc), which means that the quads only produce weak nonlinear-
ities.

To study the repetitive stability of the ring, a 7th-order one-
turn map is generated by COSY INFINITY and used for track-
ing. To be specific, we analyze the 10,000-turn dynamic behav-
ior for both horizontal and vertical motions through the inspec-
tion of phase space plots. As an example, Figure 3 depicts the
horizontal motion of on-energy particles up to 10,000 turns.



Figure 3: The 10,000-turn tracking of the x-a motion of on-
energy particles

4 Conclusion

It has been shown that it is possible to design fifth-order
achromatic bending arcs. Careful first-order considerations al-
low the use of relatively weak correction elements, and thus also
weak nonlinearities beyond the orders that can be corrected. A
storage ring containing the achromatic arcs is presented, and the
repetitive stability is studied.
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