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The transport and matching problem for  a low energy
transport system is approached from a control theoretical
viewpoint. We model the beam dynamics and transport
section using the KV envelope equations. To this model we
apply the principles of optimal control to formulate
techniques which aid in the design of the transport and
matching section. The techniques are applied to the
example of an H- beam transport and matching system.

I. INTRODUCTION

The design of particle beam transport and matching
systems has typically been accomplished in much the same
way  an experiment is run. A computer program is used to
simulate the behavior of the beam in a given transport
system. The knobs of this simulated system are then
adjusted until a satisfactory solution is obtained. This can
be a lengthy and arduous  process. The progress of such a
procedure relies completely upon the experience,
judgement, and intuition of the designer.

It is the goal of this work to utilize the principles of
optimal control theory to aid in the design of beam
transport and matching systems.  We have developed an
automated technique which determines the optimal lens
strengths to match the beam envelope to a prescribed  final
state. In this paper, we consider beams with elliptical
symmetry and apply the results to example Low Energy
Beam Transport (LEBT) sections where space charge plays
a dominant role.

II. MATHEMATICAL MODEL

A. Beam Dynamics
We model the particle beam using the KV

envelope equations.  In the two-dimensional steady-state
case these equations model a uniform density beam with
elliptical cross-section. Let X(z) and Y(z) represent the
beam envelope semi-axes in the x and y planes,
respectively. This system  may be described by the system
of coupled differential equations [1]
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where the prime indicates differentiation with respect to z,
K is the generalized beam perveance, and εx and εy are the
effective emittances of the beam in the x and y planes,
respectively. The functions κ x(z) and κ y(z) represent the

action of the transport section in the x and y planes,
respectively. They are usually referred to as the focusing or
control functions. These equations also describe the
behavior of the r.m.s. beam envelope for any beam with
elliptical symmetry in the xy plane [1,2].

B. The Transport System
The physical transport section consists of N discrete

focusing lenses cascading axially. One of the most
important assumptions we make in the paper is that    the
   action       of       each       lens       is       independent       of       the       others   . That is to
say that while the beam propagates through a lens, no other
lens affects it. This is not always physical, since we know
that, in the case of electrostatic or magnetostatic
quadrupole lenses, the fields of one lens tend to leak into
the regions of any adjacent lenses. Typically, however, we
may neglect any small coupling of this type and still aquire
accurate results. Consequently, for each lens the focusing
function is nonzero only on a finite interval of the z axis.

C. Boundary Conditions (Matching)
We are given initial conditions for the beam envelope

at the transport section's entrance position, z=zi . Label
these initial conditions (Xj,Xi') for the x plane and (Yj,Yi')
for the y plane.  In the case of a transport and matching
system we are also given desired final conditions at z=zf ,
the exit location of the transport section.  We will call
these conditions (Xf,Xf') and (Yf,Yf') for the x and y planes,
respectively.  Thus, we must satisfy the following boundary
conditions along with Eq. (1):
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D. Cost Functional
Let X(z) and Y(z) represent the x and y envelopes of

some desirable reference trajectory for the system (these
functions would be chosen by the designer). If the pair
[X(z),Y(z)] is the actual solution to Eq. (1) for a given
system, then a plausible merit functional J for the solution
trajectory is given by

J X z Y z X z X z Y z Y z dz
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This functional, in essence, measures the distance
between the solution trajectory [X(z),Y(z)] and the reference
trajectory [X(z),Y(z)].

The boundary conditions of Eq.'s (2) may be included in
the functional J with the addition of a boundary term Φ

Φ X z Y z X z X Y z Yf f f f f f( ) ( )[ ] ≡ ( ) −[ ] + ( ) −[ ],
1

2

1

2

2 2
 . (4)

Thus, the functional which we actually minimize is

J X z Y z X z Y zf f( ) ( )[ ] + ( ) ( )[ ], ,Φ  .

III. OPTIMIZATION TECHNIQUE

Since the lens actions are independent, the focusing
function κ(z) may be subsectioned into N discrete parts,
one for each lens. Denote the focusing function for lens n as
κ n(z). Also the functional profile for each κn(z) is known
from the geometry of the lens. Therefore, only the
amplitude of each κn(z) remains variable (we do not vary
the axial placement of each lens). Denote  these
amplitudes un. We are left with a linear cascade of discrete
lenses which act on the beam, in succession,  according to
Eq. (1).  The beam is steered solely by adjusting  the set of
controls {un}. This situation is referred to in the literature
as a multistage control network [3]. The formal control
problem is stated as: find the sequence of controls {un}
which steers the system state from [Xi,Yi] to [Xf,Yf] according
to the dynamics of Eq. (1) and which minimizes the merit
functional of Eq. (3).

We employ two different techniques from optimal
control theory to solve this problem. The first is dynamic
programming which has been outlined in a previous paper
[4]. The  technique works well for axisymmetric systems
but usually becomes too CPU intensive for the two
dimensional KV equations. Rather, in this situation note
that Eq. (1) yields X(z) and Y(z) as implicit functions of the
un’s.  Therefore the functional J may also be regarded as a
function of the un’s. The next logical step to this method of
representation would be to take the gradient of J with
respect to the un’s. Once we have this gradient, we may use
nonlinear programming to search for the minimizing set of
lens amplitudes [5]. This approach constitutes the second
technique for solving the control problem.  Fortuitously, this
control problem has a rich mathematical structure which
may be exploited for computation of the gradients.  It is
possible  to find them using only numerical integration,
rather than differentiation. This yields a more accurate and
a more stable search algorithm.

The major advantage of the second approach is that it is
substantially faster than dynamic programming. So much so
that the algorithm usually converges in a matter of minutes
(dynamic programming for the fully two dimensional case
typically has run times on the order of a day). The major
disadvantage is that the technique searches out only local
minima. Consequently, it is necessary to pick a starting
point for the algorithm. That is, the designer must choose a

set of starting values for the un’s. Once started, the
algorithm will pick out local minima in the vicinity of this
starting set. This is quite unlike dynamic programming,
which is a global technique not requiring any
differentiability conditions.

IV. EXAMPLE

Both the algorithms discussed above have been
implemented in a computer-aided design program called
Spot, which runs on the PC under Microsoft Windows. It is
an environment where the designer interacts with the
optimizer in order to steer it in the desired direction. In this
way the designer may quickly obtain local solutions to the
optimal control problem using the nonlinear programming
technique. Once found, the result may be checked using
dynamic programming.

A. LEBT System
We consider the case of a Low Energy Beam transport

(LEBT) section for high-current, high-brightness H- beam
currently under study at the University of Maryland [6]. The
system is composed of six electrostatic quadrupole lenses
(ESQ's) sandwiched between grounding shunts. We model
the action of each lens using the "hard-edge"
approximation. A detailed description of the system can be
found in reference [6].  We list below the relevent
parameters.

I
(mA)

V
(keV)

εx, εy

(m-rad)
Xi & Yi
(mm)

Xi' & Yi'
(mrad)

30 35 5.56x10-5 1.25 50

Table 1:  Beam Parameters

Lens No.'s Aperature
Radius(mm)

Length
(mm)

Spacing
(mm)

1 & 6 15.0 25.0 6.0

2 & 5 22.0 59.0 6.0

3 & 4 22.0 47.0 6.0

Table 2:  LEBT Parameters

B. Design Guidelines
Our goal is to match the beam to the final state

Xf=Yf=1.25mm, Xf'=Yf'=-50mrad. We have the design
guidelines that the beam excursions through the ESQs
should not exceeded 75% of the aperature radius; this
requirement will minimize spherical aberrations. Also, the
lens voltage seen at the beam envelope should not exceed
10% of the beam voltage in order to minimize chromatic
aberrations. In the following figures the controls {un} are
plotted, rather than the actual ESQ voltages. In our
nonrelativistic situation, the conversion formula is given as

V u V an n b= 2 (5)

where Vn is the ESQ voltage, Vb is the beam voltage and a
is the ESQ aperature radius.



The reference trajectory we have chosen is  a piecewise
linear function of z (we let X(z)=Y(z)=R(z) ).
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In this way the reference trajectory levels off  to 60% of
the  aperature radius of lenses 2,3,4, and 5 while remaining
well within the requirements of lenses 1 and 6.  The
reference trajectory is shown in the following figures along
with the corresponding solutions.

Figure 1 depicts the solution obtained by the nonlinear
programming technique without any constraints imposed
upon the lens voltages. The beam is essentially "bounced"
off of these two lenses. Clearly this is an unacceptable
solution since the beam envelope is comparable to the lens
aperature. The situation is remedied by imposing
constraints on the lens voltages in the nonlinear
programming problem.

It was found that the current ESQ system cannot strictly
meet the criteria for minimization of chromatic aberrations.
A feasible solution was found when holding the lens
voltages seen at the beam envelope to 15% of the beam
voltage. This solution  is shown in Figure 2. Note that the
beam focusing is distributed more evenly across the lenses.

We wish to compare these solutions with that obtained
previously without any automation. Figure 3 shows a
solution obtained strictly by trial and error with the aim of
achieving the same design guidelines. Both show similar
characteristics. However, the trial and error solution
violates more of the design guidelines. The most notable
violations occur at the first lens, where the beam envelope
fills 85% of the ESQ aperature and the lens voltage at the
envelope is 20% of the beam voltage. This solution also
fails to meet the boundary conditions exactly; the
convergence is only -40mrad. We also mention that the
solution of Figure 3 was found over several hours by an
experienced designer while that of Figure 2 was found in
less than half an hour.  

V. CONCLUSION
The optimization techniques discussed here provide the

basis for a useful computer aided design tool. When
implemented as above, the designer may interactively
guide the optimizer to desirable solutions.  These solutions
may then be checked against the dynamic programming
scheme. This saves a substantial amount of time in the
design phase and also allows for the exploration of many
design alternatives.
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