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A perturbation method is used to obtain analytic expressions =k /B, =k.c/vV,
for the multipole longitudinadnd transverse beam . (2.3)
impedance for an arbitrary waveguidboseradius isslowly 2mA, = Qye *#
varying andfor the specific case of a symmetric small-angle
taper. This method islso applicable for a particle in aThe wave equation, (2.2), issolved iterativelyusing the
wiggler undergoing periodic motion. perturbation procedure outlined in th@revious section.
Performing iterations about the zero order equation allows the
. INTRODUCTION AND BASIS following equations to be obtained five first ordermnd n-th
OF THE METHOD order iterations:
2019 3 o_ 8(r=1)

Viy® =
In linear colliders, the particlbeam traversinghe structure r ror or r (2.4)

will tend to possess a corona of stragrticles with large V2y" - 2ik 0 1 1 90° o

transverse amplitudes. In order to minimize deéeterious Y =4 OEy _8"3?3/

effects ofthese particles on the luminosity of theam a

scraper is often used to disassociitem from themain \yhere er, =1-5; and &} is the Kronecker delta function.
beam. However, the scrapemay lead to aenhanced 1o Green's functiofor the left handside of the zero order
transverse wake-fieldndhence lead to a diminishing of thepart of (2.4), viz,G(r,F)=rIn(r/r), allows the general
beam emmittance.

solution to the above equation to be developed as:
The method delineatedbelow to calculate the beam o _ [ grloik 0 na 18_2
impedance, relies on the angle of the taper being small, as i$ = Ko azy En 972 y
also required in practice to minimize beam degradation. In

order that the expansion remain valid it is requirethat

kob<<land kpob'<<l (where b= db dz The local change Where &) is a constant of integration and theantity in

in b(z), is required to be smatipweverthe overall change Parentheses is evaluatedrat’. Thus thezero order, and

n2}G(r, r)+a,(2(2.5)

may be largke first order solution are obtained as:
y® =a,(2)—In(r/ 5)8(r- 1) 26
II. APPLICATION OF METHOD TO THE yP =a(2+ jk,*a(2 '

MONOPOLE LONGITUDINAL IMPEDANCE
where 0 is the unitstep function. The &) functions are
In the frequencydomain the electriand magnetifield is obtained upon consideration of theundary conditiorthat

expressed in terms &, the vector potential: the electric field along the taper is zero along the plane of the
E=—iZ (k.+k2VV)A transition:
Zofko +kaVV) 2.1) E,+B(2E =0 2.7)
H=VxA

The above boundargondition is applieduccessively at each
where k, is thefree space wavenumber; 5 the impedance iteration:
of free spacand thevector potential, for monopole a mode, d , o9 , € d[o .,
lies along the axis of the structurd, = zA,. The wave ) Y T ik d_z[a_zy }
equation, upon applying the Lorentz conditiéor, a charge 0
Q traveling \_N'th avelocity v, (= ¢ 3;) offsetfrom the axis by |, e above,the total derivativeare evaluated taking into
fo, becomes: ) account b(z) variation.This allows the wave equation to be
(}iri_zjﬁ i_,_a_Jy: _9(r—r,) (2.2) solved in powers ofk. The longitudinal impedance is given
ror or %0z 07 r ' by the inverse Fourier transform of tivake fieldand this is
readily rewritten in terms of the electric field as:

Here terms of ordef? have been neglected, and the enhanced :—i'rwdzEl(ko)exp(jk 2) (2.9)
wavenumber and axial potential are given by: - QI °

(2.8)



Curves of the impedance function, given by (2.13) ughital

This is transformed into: order in free space wavenumber, fer=blcm, d = .3cm, and
Z (T L g = 6¢cm, are illustrated in figure 1 (where additional terms up
Z =j— K (2.10) to seventh order in ckare also included). Théinear

functional dependence on frequency is indeed sufficient at
large wavelengths. However, increasing thefrequency

and integrating by parts enables the impedance to be obtal ly gives rise to significant non-linearity in the

as: ) dependence of the impedance gn kndeed, for frequencies
ﬁzy(i) (2.11) in the neighborhood of 3BHz the perturbation scheme is no
longer valid as is revealed upon inspectinigher order
perturbations.
The impedance resulting from the applicatiortho$ method
up to third order in kis given by: [1l. EVALUATION OF THE
7, = jk Z, fdz[b 5 b b'z( 522)] (2.12) TRANSVERSE IMPEDANCE

The transverse impedance is evaluated by solvingviwe

Comparing theabove with the impedance obtained yequatlon for a vector potential, which the frequency

Yokoyé it is evident that the first term in parenthesesdomaln has components:
corresponds this result and all additional terms are higher A = Ze’m"’[ArHA ¢+A22] (3.1)
order corrections. — !

Applying this method to the impedance of symmetric The wave equation for a harmonic m, is transformed into:

cosinusoidal tapeiy(z) = b, — dcos %)gives”: , (mY 3(r—r,) ~ 9 92
. 2 2 Vr_ - yz:_ + 2Jk0___2 yz
jk,go 1(nby\ = = r r 0z 0z
Z, == 12| =2 (Z+ 7)) (2.13) (3.2)
4n 2\ +1)2 B 92 ‘
{VZ —(m—‘) }y {21 0 }y+
where the three parametets, 2, anda are given by: ' %z o
z=1 %(b%) o= "—; where the harmonics of the vector potential are given by:
(2.14) Q. ok
3. = 2tk 2 ' A=Y R
7= [1—%—:%(%) +(8) () | - 3

ActA, =gye =2 (y ty, Je*

Thus, it is evidenthatfor kjbg<<1 the first term of (2.14) is _ . _ _
sufficient forthe calculation of the impedancelowever, in Using the Green’s function for the left hand side of (3.2) viz
the opposite limit higher order terms must be retained. G(nr) r K r )m (r.jm}
nf)=—;y\(—| —-|—
r r
Imaginary Impedance of Tapered (3.4)
Structure vs Frequency (GHz) G.(r.r)= r

malls) ()

0
-5
-10 the wave equation issolved forthe m-th order harmonic of
the vector potentialexpanding abouthe zero order solution
YokoyaTerm enabling the n-order equation to be obtained in the form:
,,,,,,, RN y" = jordr G,(r,P)f, +a ((r/ t)™
. \\ \\ ) . ) ) (3.5)
T yl = [dr G, (n e+ (A(r 1)™
— — — T7th Order Terms
where the functions within the integrals are evaluatedrat

and are given by:

Figure 1



0d(r=ro) o J L 0
f,=-8, p T, 21k a_yz " 32 VY Herethe transverse impedankasbeen doubled to convert
(3.6) from an exponential variation to a cosinusoidal harmonic.

f =0 2k i n1_gl o2 Additional higher ordecorrections, up to second order ifn k
= = &) Ko oz Y " 97> Y are readily included for the dipole mode (m=1):
iz b1 1129
This enables the zero order solution to be obtained as: Zr= —Osz{[E} %k b' } (3.14)
Im| [m] im| T

r r r oo
v = aS(z)[r—j —e(r—rO)Kr—) (2] }

° ° (3.7) IV. DISCUSSION

Im:£1
y© = a+(2)[ J : o

r The perturbation technique is an accurate meth@vatiate
the impedance ofslowly varying accelerator structures
consisting of waveguide with a sufficientsfowly varying
radius andfor for a restricted frequenecgnge. For the
specifictaper under consideration a first order perturbation is
augmented with additional higher order terms with
X jk b d X chreasmgly large frequencies up to the point at which the
Dy = ——2— (y+ y’)_d_z(yz +jk51Dy) perturbation scheme is no longer valid.

(3.8)

Further, iterationsproceedusing (3.5)and the remaining
constants of integratiorg) (z) and a}(2 are evaluated by
applying the conditiorthat both the tangential electriwgeld

and the azimuthal electric field are zero along the boundar

Additional work is in progress on extenditige frequency

range in which the technique is vabdd this isachieved by

enhancing the method with ligher order perturbational
technique. In this case (2.2) becomes:

_ 2
(}iri—zﬁ i) d(r-ry) 9

j b
Dy + - (y, —
e (v.-y.)

HereD operating on y is defined by:

Dy= {}ir(m y)+g(y+—y)+iyz} (3.9)

= X7 9 4.1
(9 3z ror or JOazy y 4.1)

r 0z?

The zero ordepart of (4.1)corrresponds to setting thigght
handside to zero. Utilizinghis methodenables théack-
scatteredvave to baaken into acccourdnd thisenables the
real component of the impedance to be evaluated. Further
work is also in progress on applyinfpis technique to

2, =2 ()" =—=2 JdZE((D) ke (3.10) investigate the beam impedance of a FEL wiggler.

This completeghe calculation of the total fieleixcited by the
m-th harmonic of the charge traversing the structure.

The longitudinal impedance is given by:

V. REFERENCES
and in terms of the vector potential:

koz .0 ke 1. For a harmonic oscillator, driven at fiequency
J Z{ Koy + € (Dy_JkOy )e } substantiallybelow its naturdfequency a perturbation
(3.11) aobut the zero order (obtained by settialf) time

_ 2y “dzD derivatives to zero), gives an accurate solution for the
T on L zDy ampitude of the oscillation. The methatkscribed

herein is the spatial analogue of the time-dependent
where (2.1)hasbeen usedind an integration by parts has  perturbation of a simple harmonic oscillator.
been performed. Further, in cylindrical coordinates the
Panofsky-Wenzel theorédmmay be applied.enabling the 2. K. Yokoya, CERN SL/90-88, AP, (1990)

transverse impedance to be obtained as:

7 - m b 312 3. This result, up to thirdrder in /g, hasexactly the
T __k_o - (3.12) same coefficients as obtained by B Warnock, SLAC-

PUB-6038, 1993

This facilitates the transverse impedance to be obtained up to
zero order in kas

_ jZ m
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