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Abstract

Multipacting can cause breakdown in high power rf components
like couplers, windows, etc. This phenomenon starts if certain
resonant conditions for electron trajectories are fulfilled and if
the impacted surface has a secondary yield larger than one. A
general cure against multipacting is to avoid the resonant con-
ditions. Therefore we investigated the dynamics of the electron
trajectories in order to find rules for these resonances and thus
suppress multipacting by appropriate design. We developed a
new code which combines standard trajectory calculations with
advanced searching and analyzing methods for multipacting res-
onances. As a first step, coaxial power lines are investigated. We
characterize multipacting behavior in straight and tapered lines
and give scaling laws with respect to dimension, frequency and
impedance. The calculations are compared with experimental
observations.

I. INTRODUCTION
This paper gives a brief description of a code developed for

analyzing multipacting in rf cavities. The code consists of two
main elements: The first step is to recognize those rf power lev-
els in the given geometry that are able to multipact. The second
step is to locate and identify the possible multipacting processes.
The core of the code consists of standard trajectory calculations.
The novel feature is a systematic application of ideas arising
from the theory of dynamical systems.

II. THEORETICAL BACKGROUND
Physically, the multipacting process is described as follows.

An electron is emitted from the surface of an rf cavity and driven
by the field. When it impacts the cavity wall, it may release one
or more electrons from the surface layer of the wall, the number
of the secondary electrons depending on the impact energy and
the wall material characteristics. These secondary electrons are
again accelerated by the field, yielding new impacts and possibly
new secondary electrons. In appropriate conditions, the number
of electrons may increase exponentially, leading to remarkable
power losses, gassing of the surface and heating of the walls.

The following is a brief summary of the mathematical de-
scription of the process, which constitutes the background of
the programs used for analyzing the multipacting processes in rf
cavities.

A. Dynamical system

Consider a void cavity
 with a time harmonic rf field. De-
noting byf the rf frequency, the electric and magnetic fields can
be written as

~E(x; t) = ~E(x) sin 2�ft; ~B(x; t) = ~B(x) cos 2�ft;

where ~E(x) and ~H(x) are the spatial amplitudes of the fields.
Let ' denote the phase angle of the field,0� � ' < 360�. Con-
sider an electron being emitted at a pointx of the cavity wall
@
, the field phase at the time of emission being'. Assuming
that the rf field map in the cavity is known, it is a straightfor-
ward matter to compute the relativistic trajectory of the electron
driven by the field. Denote byx0 the point where the electron
hits the cavity wall for the first time. If the phase of the field at
the time of the impact is denoted by'0, we have a mapping

R : (x; ') 7! (x0; '0):

Using the notationX = @
 � [0�; 360�[, the above map-
ping R defines a dynamical system in the phase spaceX:
Each pointp = (x; ') 2 X generates a discrete trajectory
fp;R(p); R2(p); : : :g. For each initial point p 2 X, there are
two possibilities: It may happen that after a finitely many im-
pacts, the field phase is such that the electric field prevents the
electron from escaping the wall. In this case, the discrete tra-
jectory remains finite. The other possibility is that the discrete
trajectory is infinite. The latter case is the geometric condition
for the multipacting to occur.

Besides the geometry of the trajectories, the analysis needs
to contain the secondary electron yield characteristic to the sur-
face properties. Given an electron trajectory starting at a point
p, the kinetic impact energyEkin(p) can be computed. If the
secondary electron yield of the cavity wall is denoted by�, the
number of secondary electrons due to one single electron start-
ing atp is in the average given by�(p) = �(Ekin(p)). Consid-
ering the full discrete trajectory, the number of secondary elec-
trons due to one single electron starting atp aftern impacts is

�n(p) = �(p) + �(p)�(R(p)) + : : :

+ �(p)�(R(p)) : : :�(Rn(p)):

B. Distance function

A special case of the infinite trajectories that leads to reso-
nant multipacting is when periodic trajectories appear. This cor-
responds to fixed points of the mapping, i.e.,

R(p) = p

for somep 2 X, or more generally,

R
n(p) = p; n = 1; 2; : : :

Physically, this corresponds to a situation where an electron tra-
jectory hits eventually the same wall point in the same field
phase where it started. This condition is fulfilled in the earlier
described multipacting phenomena, and it seems to be a poten-
tially dangerous resonant condition in general. An effective way



of searching for those pointsp in the phase space is to consider
the distance function

dn(p) =
p
jx� xnj

2 + jei' � ei'n j2;

wherep = (x; ') and(xn; 'n) = R
n(p). Here, is a scaling

constant. The distance functiondn tells how far away the trajec-
tory is aftern impacts from the initial point. Ifdn(p) is small
for n large, the pointp is likely to be prone to multipacting.

III. COMPUTATIONS
To obtain reliable results, the rf field maps have to be known

rather accurately in the cavity. In straight coaxial lines discussed
below, the field map is no problem since it is analytically known.
In the other cases, one has to use a numerical scheme. We have
developed a suitable numerical code for computing the fields
in axisymmetric geometries. The code is based on boundary
integral equations, with extra care being taken for the accuracy
of the computations close to the walls.

The multipacting analysis was implemented along the follow-
ing lines. Given a cavity
 and the corresponding rf field map,
we picked a large number of initial pointspj in the phase space
X associated to the boundary and foreach pointpj computed
the discrete trajectoryfpj; R(pj); R

2(pj); : : :g. After a fixed
numbern of iterations of the mapR, we counted those electron
trajectories that were still able to multipact. This number, de-
noted bycn, was computed repeatedly for different incident rf
field powers. If at a given incident power no multipacting can
occur and the discrete trajectoriesfpj; R(pj); R

2(pj); : : :g are
short, the numbercn is very small. The multipacting powers
outstand clearly as having an elevatedcn value.

Having the counter functioncn computed, we plotted the dis-
tance functiondn(pj) for those rf power values wherecn was
large. The minima ofdn give the initial points of those trajec-
tories that correspond to multipacting. A recomputation of the
trajectories starting at the minima ofdn can be used to analyze
the nature of the multipacting process. The important questions
are the order of the multipacting (number of rf cycles per wall
impact), whether it is a one–point or multi–point multipacting
and whether it is due mostly to the magnetic or electric field.

Finally, the kinetic energy condition foreach multipacting
process has to be checked. If the impact energies are too low or
too high, no multipacting will occur even if the geometric condi-
tions are satisfied. The kinetic energy check was done by com-
puting the number�n defined earlier for the potentially multi-
pacting trajectories.

A. Coaxial cable: Scaling laws in SW operation

The multipacting analyzer was first applied to straight coaxial
lines in standing wave (SW) operation. The computations were
done in a half wavelength long section of the line.

The following is a summary of the results. First, the analysis
showed that multipacting in SW coaxial line fields is due to the
electric field only. In fact, the powers that yield multipacting can
be found by computing the trajectories at the electric field max-
imum only. Second, both one–point multipacting (from outer
conductor to itself) and two–point multipacting (from outer to
inner conductor and back) may occur. We analyzed the multi-
pacting in lines with different sizes, different rf frequencies and
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Figure. 1. Multipacting bands in coaxial lines

different line impedances. It turned out that the multipacting
powers obey quite accurately the following scaling laws:

Pone�point � (fd)4Z; Ptwo�point � (fd)4Z2
;

wheref is the rf frequency,d is a size parameter (in this pa-
per d is the diameter of the outer conductor) andZ is the line
impedance.

We computed the average impact energy of the electrons in
multipacting trajectories. It was verified numerically that the
average impact energy obeys roughly the scaling law

Ekin � (fd)2;

in accordance to a simple dimension analysis. Typically the sec-
ondary electron yield for Niobium has a maximum around 400
eV, and is larger than one in the range� 100 – 1500 eV.

Figure 1 is a graphical summary of the analysis. The upper
horizontal axis is the natural logarithm of the number(fd)4Z
(in (GHz�mm)4�Ohm). The one–point multipacting powers
for a given coaxial line can be found by computing this number,
drawing a vertical line and reading the powers where this line
intersects the bands marked by circles. The lowest band is the
first order one–point multipacting band. The next band upwards
is a two–point first order band, then follows a set of one–point
bands, the order increasing up to 8 when one moves up in the
figure to lower powers. The kinetic energy condition 100 eV
� Ekin � 1500 eV when multipacting may occur is marked in



the picture by shading. Similarly, the lower horizontal axis is
the logarithm of the number(df)4Z2 (in (GHz�mm)4�Ohm2),
characteristic for two–point multipacting. By computing this
number and reading the intersection with the band marked with
asterisks gives the multipacting powers. Note that there is only
the first order two–point band in the picture; the higer order
bands tend to get mixed with the more prominent two–point
bands. Again, shading at the far left of the band indicates where
the kinetic energy condition holds. With typical design param-
eters, the two–point process has a too large kinetic energy for
multipacting. The circles and asterisks in the picture correspond
to the 50 Ohm 1.3 GHz TESLA line.

B. Transition to TW operation

It is important to understand the behavior of the multipacting
levels when the field switches from standing wave to the trav-
eling wave, i.e., the reflected wave vanishes. We repeated the
computation with the coaxial line with no reflected wave, and
found that the multipacting levels shiftaccording to the simple
rule

PTW = 4PSW ;

i.e., in the traveling wave operation each multipacting level ap-
pears at four times higher one–way rf power. There is a simple
physical heuristics behind this phenomenon: The peak voltage
in standing wave operation is twice the peak voltage of the trav-
eling wave. The analysis of the trajectories show, however that
the situation is a bit more subtle, since the multipacting elec-
trons have to be traveling as the wave form moves.

C. Other coaxial structures

The analysis algorithm has been applied so far to a set of
coaxial structures. These include the tapered coaxial line and
coaxial lines with an impedance step. Currently, we are running
computations with grooved lines and certain ceramic window
designs. The results will be reported in a forthcoming article.

D. Test cavity

To test the method, we made computations in a geometry
where direct multipacting measurements can be made. A test
cavity with a direct access to the multipacting current as well
as the experiment are described elsewhere in this proceedings
([2]). The electric field in the gap between the electrodes is fairly
homgenous, and two–point multipacting of ordern between the
electrodes is expected at voltage drop close to

V(n) =
me

e

4�f2d2

2n� 1
: (1)

This is the field giving resonant trajectories between two infi-
nite parallel plates with time harmonic voltage drop. Figure 2
shows the counter functionc30 versus the voltage between the
electrodes on the symmetry axis. The two prominent bands cor-
respond to the first and second order two–point multipacting be-
tween the electrodes. They agree well with the theoretical val-
ues (1), marked by an asterisk. The slight shift to the left is due
to the positive initial velocity used in the trajectory calculations,
not included in (1). This figure corresponds to the measured
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Figure. 2. Multipacting counter function for the test cavity

curve in Figure 3 in [2]. Let us mention that the computed ki-
netic energy for the second order process is typically too low to
appear with secondary electron yields characteristic e.g. to Nio-
bium surfaces.

References
[1] E. Somersalo, P. Yl¨a–Oijala and D. Proch: Electron multi-

pacting in RF structures. TESLA Reports 14–94.
[2] D. Proch, D. Einfeld, R. Onken and N. Steinhauser: Mea-

surement of multipacting currents of metal surfaces in RF
fields. WPQ24 (This conference).


