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A beam line map construction method for linear and
circular high-energy colliders is described which avoids
truncated power-series maps through systematic use of a
two-term Baker-Campbell-Hausdorff (BCH) formula in
combination with similarity transformations.  The beam
line map ultimately assumes the form of a product of a
linear map and a single-exponential Lie-operator map.  The
method i) provides insight into map generator sources, ii) is
accurate, iii) is complete in that all effects, such as edges
and soft fringes, mis-alignments and mis-powerings,
multipole errors, and input beam errors can be simply
included, iv)permits faster map computation times, and v)
bypasses truncated power-series map methods allowing for
higher order, and even non-polynomial generators.

I. INTRODUCTION

There are many possible motives for creating and
using maps in conjunction with accelerator lattice design
and analysis, and the method chosen for creating the map
will depend on this motive.  We describe four distinct
primary motives.

1. Structure.   It is highly desirable to have maps that
correspond exactly with the algorithm used for single
particle tracking.  This allows the user to establish the
validity of these maps by comparing map tracking
with element-by-element tracking.  The map creation
algorithms developed by E. Forest and collaborators,
represented in the code DESPOT [1], have focused on
this objective. A symplectic integrator must be found
for each lattice element or sub-element to represent it
in element-by-element tracking.  The map creation
can then be carried out by "tracking" a power series
through the lattice.  Reliability is also enhanced by
the methodical nature in which elements are pieced
together, referred to by Forest as “lego like”.   The
resultant power series map for the lattice is
guaranteed to be symplectic and may be
exponentiated, if desired, by using the Dragt-Finn
factorization algorithm [2].  The major disadvantage
of this method is that it becomes very computer
intensive for large lattices, high order or many
additional variables.   However tools in the LIELIB
package which accompanies DESPOT do allow the
user to implement other map composition methods.

2.  Accuracy.  A second motive places primary emphasis
on machine precision accuracy .  The programs
developed by A. Dragt and represented by MARYLIE
[3] and M. Berz in COSY- Ιnfinity  [4] are examples.
MARYLIE uses a generator based map-concatenation
in which   each element or element part is represented
by an ordered generator-based factorization, and map
concatenation is based on an algorithm that can take
the product of two such factorizations and produce a
single factorization of the same form.  The program
"Genmap" accomplishes this task for continuously
varying Hamiltonians, such as those occurring in
fringe-field regions.  To do a corresponding element-
by-element tracking  requires use of mixed variable
generators for each element.  Coresspondence with
maping is not exact.  The COSY- Ιnfinity  uses  power
series maps by direct expansion of the original Lie
generators, operating on coordinates or polynomials.

3.  Insight.  A third motive, is the creation of maps in a
transparent way, that yield analytical results and
provide insight into lattice function.  In principle
analytical results can be obtained by the previous
methods, but a BCH based map concatenation
provides better insight into map composition.  BCH
composition  and has been  carried out by N. Walker
in the code LAMA [5] using a symbolic manipulation
program. This method is especially useful for lattice
modules such as linear collider final focus or
collimation systems.  One can allow all lattice and
error parameters as well as incoming beam conditions
to be variables.  This method is far too slow for use
with large lattices.

4.  Speed.  Speed becomes an issue in a large lattice
design project because the number of lattice
variations encountered is so very large:  variations of
a multitude of error types and strengths;  inclusion of
fringes, kinetic nonlinearities, and/or parasitic
crossings; changes in section phase relations, changes
in chromatic correction techniques, tune-shift-with-
amplitude control, insertion devices, solenoid with
skew compensation schemes, beam line geometry
changes, and so on.  For each of these lattice changes
one would like to have a map to assess performance
with a tune-space scan [6] . Another advantage of a
fast map algorithm is the ability to introduce many
lattice parameters as variables, and fit or optimize
these variables to achieve desired  aberration
coefficients or performance. A map composition



process whose primary motive is speed is described
below.  It is based on experience with method 3
above, and hence can also provide insight into lattice
dynamics.

II. MAP COMPOSITION METHOD

We summarize the steps of a composition method
based on simlilarity transformatins and a low order BCH
composition formula.   The first six steps describe the
conceptual setup.  Compustation begins with step 7.

1) Represent each element as an infinite Lie product
corresponding to cutting the elements into thin slices.
The generators will be s-dependent when necessary,
as for example in fringe regions.  Lie maps may be
inserted at the ends of the magnets to provide for
translations and rotations of the magnet [7].

2) In each slice, separate the linear design part of the
generator from the remainder and write the map of
each slice as a product of two maps.  This is possible
because the generator strengths are infinitesimal.

3) Use similarity transformations to move all design
linear maps (2nd order in transverse variables) to the
front of the beam line product.  This can be accounted
for by replacing x (or y, or px or py) in each slice by
xi where it is understood that xi is x at the ith element
written as a linear function of the particle position and
momentum at the end of the beam line.

4) Use a 2nd order BCH algorithm to integrate the map
factors for each element into a single generator [8].  If
the element is particularly long or strong, this can be
done for sections of the element rather than the whole
element.  If fringes effects are to be considered, the
integral for the fringe region is done by first
expressing the xi as function of position and slope at a
place within the fringe [9], and later expressing the
coorcinates there as functions of coordinates at the
end of the line.  To do the body integral, xi is  written
as a function of the momentum and position at the
center of the element.  The results for the body
integrals will be a function of xk  and yk  the
transverse coordinates at the center of the kth
element, plus a function which depends also on px,k
and py,k.

5) Factor the map for the element body integrals found
above into a central term surrounded by two side
factors so that the central term has a generator
containing terms  depending  on  xk and yk  alone.

Now “big” terms are either in a central factor, which
depends only on transverse coordinates (hence are kicks),

or in the translation and rotation generators surrounding the
element.  The central  factors can be totally  factored
because all terms in the generator “commute” (have zero
Poisson brackets with one another).  The translations and
rotations are steering elements: For translations the
generator is ∆y py,  and for small vertical rotations the
generator is ∆θ(y+L/2 py) where L is the length of the
element.   Next we remove the main dispersion generators.

6) Perhaps the largest of the body terms are the sources
of design dispersion coming from the main dipole
magnets.  These terms can be removed using
similarity transformations, very much like the design
linear terms.   The net effect of removing these terms
will be that  xk and px,k are replaced by xk+ηx,kδ
and xk+η‘x,kδ where ηx,k is the horizontal design
dispersion.

We now have the basic factored representation of the
lattice with the linear design, including linear dispersion,
removed.  We proceed to consolidate this representation
into a few factors after taking care of the steering terms,
which can be quite large.

7) Starting at the end of the beam line, use similarity
transformations to move all the first-order (steering)
generators to the front of the beam line.  Itermediate
transformed  generators will have feed down terms
some of which will be steering terms.  For the large
central factors these are easily factored out and added
to the steering generator.  This is not as simple for the
side-factors.  If the feed down steering in the side
factors is thought to be significant, these factors  can
be further factored, pulling the steering terms into
side factors.  One then brings the two steering terms
to the front side by a subsequent similarity
transformation.  Further feed down terms are formed,
but these are now due to steering from the side factor
itself, and can be assumed to be small. (Solenoid
fringes can contain important steering terms, but these
are already present in the linear model.)  Since the
exact values of steering correctors throughout the ring
are not exactly known, there is a limit to the precision
one can or should attempt to achieve.  It should also
be noted that one must implement a steering
correction algorithm to determine corrector strengths
before embarking on the map generation process, or
algorithms can be used which calculate the steering
corrector strengths during this step.

We are ready to begin the map consolidation process.
The exact procedure must be chosen to suit the particular



situation.  If there are especially large sextupole and/or
chromatic correction terms, these should be flagged for a
similarity composition process and will define ends of a
module.  In the next step the maps for the modules are
assembled.

8) The lattice will consist of several modules which may
either be what is normally understood as a module,
like an arc, a straight section, a chromatic correction
section, a beta-match section, and so on, or just the
lattice between two large higher order elements that
one intends to collapse using the similarity
composition rule.
In this step the map for each module is assembled
either as a single exponential map, or as a factored
map consisting of a product of three maps: the first
with a generator that is of first order in transverse
variables (dispersion terms), the second with a
generator of 2nd order in transverse variables (linear
terms), and the third whose generator contains higher
order terms.  For a factored map the dispersion terms
are found for the module using a similarity process to
move these terms to the front of the module as was
described for steering (7) or dispersion (6) above.
This is followed by using a similarity process to move
the linear terms to the front.
The final step uses the BCH formula to assemble all
remaining generators into a single generator.  Note
that all of the large terms have been (or will be)
handled with similarity transforms.  Thus the BCH
process is expected to converge quite rapidly, and in
most cases a second order BCH formula is sufficient.
A third order BCH formula may be used to check the
sufficiency of the second order formula. It is
important to distinguish BCH order from map order.
Map order can be, an is, much higher than BCH
order.

9) Strong sextupole terms in the lattice  are “collapsed”
using similarity transformations.   The details of this
will depend on the design phases between the
sextupoles.  Use of the similarity transformation is
especially important in systems such as final focus
systems, or in local chromaticity correction modules
of low beta insertions in storage rings.  If strong
sextupoles are interleaved, special attention is
required.   One collapses the paired sextupoles,
transforming the enclosed sextupole.  The
transformed sextupole  generator is now factored with
the central factor being the sextupole and the
remainder placed in the side factors.  If the
interleaving is too strong to do this in one step, the
original enclosed sextupole is factored into two

halves, and each half is factored as described above.
This process converges quite rapidly: the
approximation represented by the three factors
improving by a factor of 8 with each halving of the
sextupole.

10) Strong chromaticity terms are “collapsed” using
similarity transformations.   This is very similar to the
process. of step 9).  Many of the strong chromatic
generators will be at the sextupole locations.
Additional generators of this type will be in final
doublets.  The doublets will have been split into
several pieces in the integration of those elements.

11) Use the BCH rule to assemble the generator for the
various beam line modules.

12) Use the BCH rule to assemble the generator for the
total beam line.
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