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Abstract

A construction scheme for generating functions (GFs) suit-
able for particle tracking across arbitrary magnetic fields is pre-
sented. TheGF is approximated by a power series solution of
the Hamilton-Jacobi differential equation [1] with analytical ex-
pressions for the coefficients. This approach is applied to mag-
netic fringing fields, which are presented as simplified analytical
expressions. A short REDUCE [2] code transforms the vector
potentials automatically into an expandedGF.

I. Construction of Generating Functions

Generating functions (GFs) are an excellent tool for particle
tracking across magnetic fields. They perform a canonical trans-
formation over a finite path length. Even if they are not exactly
known and approximate expressions are used, they still preserve
the Hamiltonian character of the transformation.

Power series with analytical coefficients as approximations for
GFs of given magnetic fields were discussed in [3], with spe-
cial applications to simulate wigglers and undulators, as used
in synchrotron light sources [4]. The present approach is much
more direct and transparent. It requires less effort in manipu-
lating power series. A short REDUCE code is sufficient to ob-
tain theGF; using a general method to construct approximated,
analytical expressions forGFs, based on the Hamilton-Jacobi
equation. Starting with a given vector potential of the magnetic
field, the code generates automatically a power series, where the
coefficients are analytic functions of the vector potential and the
particle coordinates.

TheGF is calculated by starting with a Hamiltonian in a fixed
cartesian coordinate system, wherex, y andz are the horizontal,
vertical and longitudinal axes, respectively (for a general discus-
sion see for example [5]):

H = −
√

1 − (px − Ax)2 − (py − Ay)2 − Az,

were px and py are the transverse canonical momenta, normal-
ized to the full particle momentum andAx, Ay and Az are the
vector potentials of the fields, normalized to the beam rigidity
parameterBρ which is proportional to the full particle momen-
tum. Expanding the square root of the Hamiltonian yields:

H = (px − Ax)
2/2 + (py − Ay)

2/2 − Az.

This approximated form of the Hamiltonian used for the present
scheme is not a severe restriction, because higher order terms of
the expansion could be taken into account. In most cases, the
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transverse momenta and the vector potentials are small and a
Taylor expansion with respect to these variables is justified.

The GFs used in this paper depend on the initial particle
momentapxi , pyi and on the final position variablesx, y andz.
They are special kinds ofGFs of a more general type, that is
often abbreviated asF2. Particle coordinates are derived from
partial derivatives of theGF:

px = ∂F/∂x, py = ∂F/∂y, xi = ∂F/∂pxi , yi = ∂F/∂pyi ,

werexi ,yi are the initial coordinates andpx,py are the final par-
ticle momenta. In this paper theGF is defined always at the
starting pointz = 0 and at the end pointz of the transformation
in a fixed cartesian coordinate system. TheGF yields implicit
expressions for the transverse coordinate relations; using them
as a tool for tracking requires normally a Newton-Raphson root-
finding method for solving the transformation.

The Hamilton-Jacobi equation is a first order differential equa-
tion, which gives a local relation between the Hamiltonian (H )
and theGF (F):

H + ∂F/∂z = 0.

In this equation the momenta are replaced by derivatives of the
GF, px = ∂F/∂x, py = ∂F/∂y. To solve it with respect toF ,
a series expansion ofF is chosen with respect topxi , pyi and a
variablex3 which counts the order of theAx, Ay andAz terms:

F =
∑
l ,m,n

flmn pl
xi pm

yi xn
3 ,

were theflmn are dependent onx, y andz. The expansions with
respect to the vector potentials are not written explicitely; this is
included in theflmn terms and counted by the variablex3. The
order of the expansion is the suml + m + n.

The Hamilton-Jacobi equation relates different derivatives of
the coefficientsflmn and can be easily solved by a recursive
method with an algebraic code such as REDUCE. To demonstrate
the method, a REDUCE input code for theGF of a quadrupole
is given. The code has a PASCAL like input language and is
easily readible:
% quadrupole example, g = gradient [m−2]
% input of vector potential:
az := g*(x**2-y**2)/2 ; ax : = 0 ; ay := 0
;
% 4th order generating function:
ord := 4 ;
fgen:= 0 ;
for ic:=1:ord do for ix:=0:ord do
for iy:=0:ord do for i3:=0:ord do
if ix+iy+i3=ic then
<< depend f(ix,iy,i3),x,y,z ;
fgen := fgen +



            

f(ix,iy,i3)*pxi**ix*pyi**iy*x3**i3 >> ;
% initial values of the series:
f(1,0,0) : = x ; f(2,0,0) := -z/2 ;
f(0,1,0) : = y ; f(0,2,0) := -z/2 ;
% limitation of terms:
for ix:=0:ord+1 do for iy:=0:ord+1 do
for i3:=0:ord+1 do if ix+iy+i3>ord then
let pxi**ix*pyi**iy*x3**i 3 = 0 ;
% Hamiltonian:
ham:=(px-x3*ax)**2/2+(py-x3*ay)**2/2-x3*az
;
% substitution of the momenta:
ham:=sub(px=df(fgen,x),py=df(fgen,y),ham)
;
% Hamilton-Jacobi equation:
hamjac := ham + df(fgen,z) ;
% iterative solution of the equation:
for ic:=1:ord do for ix:=0:ord do
for iy:=0:ord do for i3:=0:ord do
if ix+iy+i3=ic then
<< term := coeffn(coeffn(coeffn(hamjac,
pxi,ix),pyi,iy),x3,i3) ;
if term neq 0 then <<
sol1 := solve(term=0,df(f(ix,iy,i3),z)) ;
sol2 := rhs(part(sol1,1)) ;
sol3 := int(sol2,z) ;
f(ix,iy,i3) := sol3-sub(z=0,sol3) >> >> ;
% printing of the generating function:
sub(x3=1,fgen) ;
;end;

The code prints the 4th order power series for theGF as:

F = x2 g z(1/2 − g z2/6 + g2 z4/15− 17g3 z6/630)

−y2 g z(1/2 + g z2/6 + g2 z4/15+ 17g3 z6/630)

+pxi x (1 − g z2/2 + 5g2 z4/24− 61g3 z6/720)

+pyi y (1 + g z2/2 + 5g2 z4/24+ 61g3 z6/720)

+p2
xi z(−1/2 + g z2/6 − g2 z4/15)

+p2
yi z(−1/2 − g z2/6 − g2 z4/15).

From this GF the linear transfer matrix can be calculated,
which agrees at least to the 3rd order ing with the well known
transfer matrix of a quadrupole. For example, the matrix el-
ementm11 derived from theGF yields m11 = 1 + gz2/2 +
g2z4/24+ g3z6/720+ 11g4z8/320. The expanded form of the
correct solution differs in theg4 term: m11 = cosh(

√
gz) =

1 + gz2/2 + g2z4/24+ g3z6/720+ g4z8/40320. . .

This simple code can calculate theGFs for most two dimen-
sional normal and skew magnetic fields. One only needs to re-
placeaz:= . . . in the first line by the appropriate longitudinal
vector potential. Wigglers and undulators can be simulated by
the three dimensional field approximation:
ax:=cos(kx*x)*cosh(ky*y)*sin(k*z)*b0/k ,
ay:=sin(kx*x)*sinh(ky*y)*sin(k*z)*b0*
kx/(k*ky)
andaz:=0 . However, this last example requires a lot of RE-
DUCE working space; because many terms are generated, a 3rd

order run is recommended.1 For more complicated vector po-
tentials one has to modify the code. A practical way is to solve
the Hamilton-Jacobi equation for a general vector potential and
insert it afterwards into the solution of the explicit vector poten-
tial [7].

As an example the second order result of the general expansion
of theGF is presented here:

f001 =
∫

Az dz

f002 = −
∫

( (Ax −
∫

∂ Az/∂x dz)2

+ (Ay −
∫

∂ Az/∂y dz)2 ) dz/2

f101 =
∫

(Ax −
∫

∂ Az/∂x dz) dz

f011 =
∫

(Ay −
∫

∂ Az/∂y dz) dz

f100 = x f010 = y

f200 = −z/2 f020 = −z/2

where the integration ranges from 0 toz. In a similar form the
3rd and 4th order expansions can be constructed [7].

Using the REDUCE code, theGF can be further manipulated
to find a form appropriate for a Newton-Raphson fit routine.

As a special application of this method,GFs for magnetic
fringing fields can be calculated.

II. Description of Fringing Fields

Magnets such as dipoles, quadrupoles, sextupoles and so on
are described by two dimensional multipoles. This two dimen-
sional approximation fails at the ends of these magnets, where
the particle beam enters or exits the magnet, and the field strength
approaches zero. Three dimensional fields are necessary to de-
scribe their longitudinal dependencies. A simple analytical de-
scription of the vector potentials of fringing fields is necessary
for manipulations with the REDUCE code when constructing
the GF. The analytical description discussed here is a simpli-
fication and takes into account only the first leading term of the
three dimensional field.

Expressions for the fringing fields are derived by starting with
the magnetic scalar potential in an expanded form in cylindrical
coordinates as:

V =
∞∑

i =0

ai (z)r
i sinmψ,

werer is the radial coordinate withx = r cosψ , y = r sinψ .
The numberm describes the rotational symmetry around the
longitudinalz-axis, andψ is azimuthal angle with respect to the
z axis. Quadrupole symmetry is obtained form = 2. If a is
independent ofz, the two dimensional multipoles are generated.
Replacing the sinmψ by a cosmψ function yields the skew field
terms. From the Maxwell condition1V ≡ 0 follows (with
a′

i = ∂ai /∂z):

1this requires 1 minute cpu time on the DEC 3000 machine (alpha)



          
∞∑

i =0

ai (i
2 − m2)r i + a′′

i r i +2 ≡ 0,

which yields for the coeffecients the condition:a0 = 0, a1(1−
m2) = 0 and ai (i 2 −m2)+a′′

i −2 = 0. This gives a construction
law for the series; if thez-dependence of one coefficientai is
known the higher order terms can be calculated. The coefficients
a0 anda1 are zero, if the dipole case (m=1) is excluded.

A 3rd order function will be used to describe thez-dependence
of am. This will limit the series to the first term of the higher
order three dimensional multipole. For the dipole, the leading
term of higher order isy3 dependent, and for quadrupoles it is a
r 4 term. At least a 3rd order function is required to transform the
constant,z-independent field inside of the multipole by a smooth,
analytic function to zero, at the end of the multipole:

am = am0(u
3 − 3u + 2)/4,

where−1 < u = (z − z0)/z0 < +1, andz0 is an adjustable,
characteristic length of the fringing field extension, typically the
magnet aperture radius.

The factoram0 has to be adjusted to the strength of the magnetic
field. At the positionsz = 0, z = z0 andz = 2z0 the function
am yieldsam0, am0/2 and 0. Outside of this intervalam is fixed
to am0 for z < 0 and to 0 forz > 2z0. This derivation is valid
for one side of the multipole, the fringing field of the other side
has to be constructed in a similar way.

For the scalar potential a superposition of the two and three
dimensional field terms is given as:

V = am0r
m sinmψ{ u3 − 3u + 2 − 3ur2/(2z2

0(m + 1)) }.
and for the dipole:

V = a10 y ( u3 − 3u + 2 − uy2/z2
0 )/4.

The scalar potential of the pseudo-multipole is proportional to
a′′

m. The integrated value ofa′′
m over the full fringing field area

is zero, becausea′
m vanishes at the boundaries of the fringing

field. Integrating only over half of the area, yields a nonvanishing
contribution:

−
z0∫

0

a′′
m dz =

2z0∫
z0

a′′
m dz = a′

m

∣∣2z0

z0
= a′

m(z = z0).

A particle that crosses this area will experience two successive
kicks aroundz = 0, in opposite directions. Particles circulating
many turns in a storage ring, will experience an accumulated
effect, if, on the average, their trajectory is inclined with respect
to thez-axis, which is the case if the Twiss parameterα differs
from zero. Also chromatic effects could be seen if the dispersion
function in the fringing field differs from zero.

For the construction of theGF the vector potential is required;
it is not uniquely defined. ChoosingAz = 0 one obtains from
the scalar potential in carteesian coordinates:

Ax = −
∫

∂V/∂y dz, Ay =
∫

∂V/∂x dz.

These vector fields can be used for the REDUCE input code. If
the number of terms becomes too large, one has to use a modified
version of the presented code. In case of quadrupole end fields,
for example, one expects influences from fourth order terms. A
fourth order expansion of theGF with respect tox, y, pxi and
pyi should be sufficent to study typical nonlinear effects of these
fringe fields.

III. Applications
Fringing field terms of quadrupoles were included into a stan-

dard optics code, based on the analytical representation of the
GF. The routines were modulated as invisible insertions for the
linear optics, following the scheme proposed by [6]. The linear
transformation becomes exactly invisible, if the inverse linear
transformation is derived from theGF. The BESSY II optics
[8] was checked using these routines. The dynamic aperture and
the chromatic behavior show only minor changes, when these
routines are activated. From the dipoles no further effect on the
optics are expected because the vertical Twissα at their locations
is too small.
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