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Abstract dynamics, this is always a good approximation. The dynam-
Emittance arowth due to intra-beam scattering effects ii(:s of these processes can then be described by the Fokker-
9 9 Blanck equation. Additionally taking into account stochastic

charged particle beams is estimated using a second order "Bfects means that the Viasov equation has to be replaced by the

ment description based on the Vlasov-Fokker-Planck equatiols mbined Viasov-Fokker-Planck equation. It forms the starting

It is furthermore shown that numerical emittance growth phe-". : :
. : . ; Bomt for any physical process, where the macroscopic (smooth)
nomena in computer simulations of particle beams can also

€ . ) T ) .
described by this approach. aspect is described by the Liouville equation and where in ad-

dition a chain of Markov processes cannot be neglected.

1 INTRODUCTION 2 FOKKER-PLANCK APPROACH

If we want to analyze emittance growth phenomena in charggge start our analysis writing down formally the generalized Li-
particle beams, we must distinguish the following sources: 5 ville theorem:

. e df _|9f
e a non-self-consistent charge density distribution of the w - e (1)
beam, which leads to a redistribution of the beam charges FP
within a few plasma periods. In case that a more homddereinf = f(#, p; ) denotes the normalized 6-dimensiopal
geneous charge density evolves, this results in a rapid iphase space density function that represents a charged particle
crease of the rms-emittance. beam. The l.h.s. of (1) can be expressed in terms of the Vlasov
equation
e atemperature imbalance between different degrees of free- . 1 /- . . of
dom within the beam. This can also be interpreted as a— + 7 V,f + — (Fe"t + qESC) Npf == (2)
. . : : ot m Ot | p
transition from a non-stationary to a stationary solution of
the Vlasov equation, usually designated as the equiparthe r.h.s. of (1) is supposed to describe additional stochastic
tioning effect. The related time constants are considerabdiffects not covered by the Vlasov approach. If these effects
smaller, hence the time the beam needs to reach a temp&snstitute a Markov process, we can describe it with the help of
ature balance is much larger than the time needed for thige Fokker-Planck equation:

charge readjustment. 9 9 m292
_ r[eﬁ_{] :ZT{BN 'Pif}‘i'ZW{Dij(ﬁat)f}
¢ various orders of resonances between the beam and t FP . P iy CPioPg
external focusing devices. Since usually only a fraction of (3)

the beam particles is in resonance, these effects lead td e Fokker-Planck coefficients, namely the diffusion tensor el-
degradation of the beam emittance due to halo formatiorementsD;; and the drift vector component§ must be deter-
mined in an appropriate way depending on the nature of the
All these effects have in common that they can be calculatedstochastic process.
at least in principle — by integrating the Vlasov equation, which
is a strictly deterministic formulation. In other words, all these§ SECOND ORDER MOMENT EQUATIONS
phenomena could also be observed if the space charge fields
were smooth functions of the spatial coordinates, i.e. in a rigitlpplying Sacherer's formalism[1] to the Vlasov-Fokker-Planck
continuous description. equation (2), we get the following coupled set of second order
However, there are effects which originate in the fact that theoment equations[5]:
charge distribution is granular on a microscopic scale. The inf

dividual particle motion is thus no longer only governed by thg; \* )= 2wa) =0 (4)
smooth macroscopic space charge field, but also by a rapidly (xE,) Bf.w

fluctuating field caused by neighboring beam patrticles. Obvjdg<$$/> — (&) + k3 (s)(2”) — W cg%»ﬂ”” =0
ously, these effects can only be tackled by means of statisticcfitl 2(c'E) 28 2(Dyo)
methods. (@) 4 2k ay — S L2 (302 L=

23243 T .3733.3
We restrict ourselves to cases where these effects can be Cflaf - me* 5%y P c>py
sified as a chain of "Markov' processes. Considering beahime similar sets of equations hold for theandz-directions.



A useful measure for the beam quality is given by the rms5  INTRA-BEAM SCATTERING EFFECTS IN
emittances, (s), defined as STORAGE RINGS

£

2(s) = (7)) = (ed)? . ®)  The elementary events for the global process of emittance

On the basis of Egs. (4), the derivative of the rms-emittance (ggo_vv_th due to mtra-b_eam scattering are Coulomb CO”'S'QUS of

is readily calculated to give individual beam par_tlcles. _ The dynam|_cs of these collisions

thus forms the starting point to determine the Fokker-Planck

Ligz(s) _ 9 (ﬁf_x e2(s)  (Dio) ) (6) coefficients contained in Eq. (3) for this process. Integrating

(x2) ds " ’ the coupled set of equations (4) will enable us to study the evo-

lution of the beam properties including intra-beam scattering

%?ects. Explicitly, the coefficients are determined by averaging

fﬁe velocity change of a test particle over all impact parame-

‘fers, and subsequently by averaging over all particle velocities
assuming that the velocity distribution is Maxwellian.

By (x?) P33

neglecting the “excess field energy” terms. For intrinsicall
matched beams, this quantity is approximately a constant
motion. The remaining terms are related to the Fokker-Plan
coefficients to be discussed now.
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If the diffusion as well as the friction effects can be approxi-
mately treated as isotropic, then only one diffusion coefficient |
D in conjunction with a single friction coefficiert; appears in Zool
our equations:

D = (Dee) = (Dyy) =(D:2) , B = Brie = Bryy = Bz
Under these circumstances), turns out to be proportional to |
the “dynamical friction coefficients, [3]:

kT &
Dzﬁf'ﬁ 7 ..
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If we define the ratia,., of they- to thexz-“temperature” as

) = D2 = A ) ®)

1z (y*) 3(s) Figure 1: Envelopes and emittance growth functions of a
matched beam passing through the Cooler Synchrotron (COSY)
P ok aft KFA-_‘IJ"Iich. (Th_e scale on the right-_hand side applies to the
—Ine(s) = ZhF (roy(s) + 722(s) — 2) (9) dimensionless emittance growth functions.)

ds 3

whereink; = 8¢ /c3y. Adding Eq. (9) to the corresponding As the result of the averaging procedurgs,is given by[2,
equations fotn <7 andln(é*), after integration we get the fol- 4]:

Eq. (6) can be written in an alternative form:

lowing simple expression for thefolding time ¢ of the total 9 2 2N 3/2
phase space volume B = 16;)/F ne (4 q 2) . (%) ~InA. (13)
g TEGMC
T = o 0 oy + Loz + 1y2) (10)

In order to gain a better physical insight, this quantity can be
with 1., 1., and/,, denoting the three possible integrals ofexpressed alternatively as

the temperature ratio functions. For example, the dimensionless 7
quantity/., is given by: B = Jj (Atscattering)_l .T?.InA |,
™
s 2
I = l/ [1 = ray(s)] ds > 0 (11) With Atgcaitering denoting the average time between two suc-
s Ty (8) - cessive scattering events of a beam particle,[atite coupling
0

constant of the beam plasma.

If the transverse particle dynamics can be decoupled from theAs an example, we present an integration of the coupled
longitudinal one, the-folding time for the transverse emittanceset (4) based on the structure data of thkch"Cooler Syn-
evaluates to: chrotron (COSY). The beam parameters used in that calculation
-1 _ 1 are listed in Tab. 1. The results, namely the envelopes and the
Tl et = 351 Loy - (12) . ) N,
’ emittance growth functions along one turn, are plotted in Fig. 1.
This condition is fulfilled if — for example — we simulate theWe observe that the maximum growth of the rms-emittance oc-
transformation of an unbunched charged particle beam usingars in thez-direction, whereas for these initial conditions prac-
x, y-Poisson solver. tically no growth occurs in the longitudinal direction.



Table 1: List of Parameters for the COSY intra-beam scatterinuggatlon particles from000 to 10000, i.e.

estimation Brsim o< P71
ion species HH This shows that in our case the concept of representative parti-
energy 38 MeV/amu cles constitutes the major source of numerical noise.
period lengthS 183.47 m For a comparison, the lower curve in Fig. 2 displays the cal-
horizontal tune;, 2.23 culated growth rates for a matched beam transformed under the
vertical tuneQ), 2.35 same conditions through a periodic solenoid channel. Conse-
Nay =2 — ’Yt_z 0.371 quently,f; sim Must have the same value as for the correspond-
average beam curreft 55 mA ing quadrupole channel transformation. Nevertheless, no rms-
initial RMS emittances.,,, (0) 5x107°m emittance growth at all is observed in this simulation. This out-
initial RMS momentum spreadp/p 5.8 x 107* come is explained by Eq. (12), which states that even a positive
ellipticity /.., 3.252 3, does not lead to an increase of the rms-emittance if the ellip-
ellipticity /. 2.286 ticity integral (11) vanishes. We conclude that numerical noise
ellipticity 7, 0.997 phenomena occurring in computer simulations of charged par-
friction coefficient; 4.1935s7° ticle beams can adequately be described by the Fokker-Planck
horiz. emittance-folding timer, 15.0s approach.
vert. emittance-folding timer, ¢ 43.0s
momentum spreagHfolding timer, or  336.1s Periodic Quadrupole Channel , 6, = 60° , ¢ = 15°
total emittance-folding time 7.« 32.8s L A e S S T T
115 M .
S
6 BEAM TRANSPORT SIMULATIONS @'
N 1o} — 5000 P, 50 SCC / Cell J
As has been mentioned in the introduction, the Fokker-Plani 2 T 5000 P, 100 8C / Cell
description of stochastic phenomena in the physics of charg . :
particle beams is not restricted to the effect of intra-beam sci§ e 'or 1
tering, but applies to any beam dynamical Markov process. Asz £ ~-10000 P, 50 SCC / Coll
consequence, the coupled set of moment equations (4) can ¢z § 10000 P, 100 SCC / Cell
be used to explain effects due to random errors generated by g 100 )
necessarily limited accuracy of computer simulations of part: P 0% R 80/ /cell Peridic Sdenaid Chamel ]
cle beams. Especially the problem of calculating the self-fielc O S0 10 150 200 250 00 950 400 450 500
of arbitrary charge distributions escapes an analytical treatme. ... Cells s /' S

The major sources of random errors common to all simulation ) _ ) )
codes come from the fact that Figure 2: Emittance growth functions obtained by different nu-

merical simulations of a matched beam passing through the GSI
o the continuously varying self-fields must be mpd by €xperimental quadrupole channel.

stepwise constant ones, 7 CONCLUSIONS
¢ the number of simulation particles is much smaller thaithe moment description of a charged particle beam has been
the real beam particle number. demonstrated to be useful even if additional stochastic effects

must be taken into account. It has been shown that this approach
The joint effect of all these simplifications necessary to kedgads to a fairly simple formula which can be used to estimate
the computing time finite can be visualized in the way that athe growth rates of the beam emittances caused by intra-beam
additional “error field' of a certain amplitude is added to thecattering effects. Moreover, since the Fokker-Planck equation
“true field' of the real beam. This causes a specific “simulatietescribes any Markov process, certain effects of rms-emittance
friction coefficient' 3¢ «im to emerge. Unfortunately, it seemsgrowth in computer simulations can also be explained by this
to be impossible to derive a general formula relating globallgpproach.
possibl genera formuia re;ating globalgbp 8 REFERENCES

B sim to the various sources of "numerical noise’.

In Fig. 2, the emittance growth factors obtained by numer{i] F.J. SacherefEEE Trans. Nucl. SciNS-18 1105 (1971)
cal simulations of a quadrupole channel are plotted for differep] G.H. JansenCoulomb Interaction in Particle Beamacademic
numbers of space charge calculations (SSC) per cell and dif- Press, New York (1990)
ferent numbers” of simulation particles. It can be observed[s] A. Einstein,Ann. Physikl7, 549 (1905) and 9, 371 (1906)
that the calculated growth rates do not depend very much on M. Reiser Th d Desian of Ch d Particle Beardsh
the number of space charge calculations. This indicates that - Reiser, Theory and Design of Charged Particle Begrishn

. . . Wiley & Sons, New York (1994)
this case the number of 50 space charge calculations suffices to _ _
approximate the continuously varying self-fields. On the othdpl J- StruckmeierParticle Acceleratord, 229-252 (1994)
hand, the growth rate is halfed if we double the number of sim-



