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Abstract

Emittance growth due to intra-beam scattering effects in
charged particle beams is estimated using a second order mo-
ment description based on the Vlasov-Fokker-Planck equation.
It is furthermore shown that numerical emittance growth phe-
nomena in computer simulations of particle beams can also be
described by this approach.

1 INTRODUCTION

If we want to analyze emittance growth phenomena in charged
particle beams, we must distinguish the following sources:

� a non-self-consistent charge density distribution of the
beam, which leads to a redistribution of the beam charges
within a few plasma periods. In case that a more homo-
geneous charge density evolves, this results in a rapid in-
crease of the rms-emittance.

� a temperature imbalance between different degrees of free-
dom within the beam. This can also be interpreted as a
transition from a non-stationary to a stationary solution of
the Vlasov equation, usually designated as the equiparti-
tioning effect. The related time constants are considerably
smaller, hence the time the beam needs to reach a temper-
ature balance is much larger than the time needed for the
charge readjustment.

� various orders of resonances between the beam and the
external focusing devices. Since usually only a fraction of
the beam particles is in resonance, these effects lead to a
degradation of the beam emittance due to halo formation.

All these effects have in common that they can be calculated –
at least in principle – by integrating the Vlasov equation, which
is a strictly deterministic formulation. In other words, all these
phenomena could also be observed if the space charge fields
were smooth functions of the spatial coordinates, i.e. in a rigid
continuous description.

However, there are effects which originate in the fact that the
charge distribution is granular on a microscopic scale. The in-
dividual particle motion is thus no longer only governed by the
smooth macroscopic space charge field, but also by a rapidly
fluctuating field caused by neighboring beam particles. Obvi-
ously, these effects can only be tackled by means of statistical
methods.

We restrict ourselves to cases where these effects can be clas-
sified as a chain of `Markov' processes. Considering beam

dynamics, this is always a good approximation. The dynam-
ics of these processes can then be described by the Fokker-
Planck equation. Additionally taking into account stochastic
effects means that the Vlasov equation has to be replaced by the
combined Vlasov-Fokker-Planck equation. It forms the starting
point for any physical process, where the macroscopic (smooth)
aspect is described by the Liouville equation and where in ad-
dition a chain of Markov processes cannot be neglected.

2 FOKKER-PLANCK APPROACH

We start our analysis writing down formally the generalized Li-
ouville theorem:
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Hereinf = f(~x; ~p; t) denotes the normalized 6-dimensional�-
phase space density function that represents a charged particle
beam. The l.h.s. of (1) can be expressed in terms of the Vlasov
equation
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The r.h.s. of (1) is supposed to describe additional stochastic
effects not covered by the Vlasov approach. If these effects
constitute a Markov process, we can describe it with the help of
the Fokker-Planck equation:�
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The Fokker-Planck coefficients, namely the diffusion tensor el-
ementsDij and the drift vector componentsFi must be deter-
mined in an appropriate way depending on the nature of the
stochastic process.

3 SECOND ORDER MOMENT EQUATIONS

Applying Sacherer's formalism[1] to the Vlasov-Fokker-Planck
equation (2), we get the following coupled set of second order
moment equations[5]:
d
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hx2i � 2hxx0i = 0 (4)
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The similar sets of equations hold for they- andz-directions.



A useful measure for the beam quality is given by the rms-
emittance"x(s), defined as

"2x(s) = hx2ihx02i � hxx0i2 : (5)

On the basis of Eqs. (4), the derivative of the rms-emittance (5)
is readily calculated to give
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neglecting the “excess field energy” terms. For intrinsically
matched beams, this quantity is approximately a constant of
motion. The remaining terms are related to the Fokker-Planck
coefficients to be discussed now.

4 GROWTH RATES

If the diffusion as well as the friction effects can be approxi-
mately treated as isotropic, then only one diffusion coefficient
D in conjunction with a single friction coefficient�f appears in
our equations:

D � hDxxi = hDyyi = hDzzi ; �f � �f ;x = �f ;y = �f ;z

Under these circumstances,D turns out to be proportional to
the “dynamical friction coefficient”�f [3]:
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If we define the ratiorxy of they- to thex-“temperature” as
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Eq. (6) can be written in an alternative form:

d

ds
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whereinkf = �f=c�
. Adding Eq. (9) to the corresponding
equations forln "2y andlnh�2i, after integration we get the fol-
lowing simple expression for thee-folding time�ef of the total
phase space volume
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with Ixy, Ixz, andIyz denoting the three possible integrals of
the temperature ratio functions. For example, the dimensionless
quantityIxy is given by:
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If the transverse particle dynamics can be decoupled from the
longitudinalone, thee-folding time for the transverse emittance
evaluates to:
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This condition is fulfilled if – for example – we simulate the
transformation of an unbunched charged particle beam using a
x; y-Poisson solver.

5 INTRA-BEAM SCATTERING EFFECTS IN
STORAGE RINGS

The elementary events for the global process of emittance
growth due to intra-beam scattering are Coulomb collisions of
individual beam particles. The dynamics of these collisions
thus forms the starting point to determine the Fokker-Planck
coefficients contained in Eq. (3) for this process. Integrating
the coupled set of equations (4) will enable us to study the evo-
lution of the beam properties including intra-beam scattering
effects. Explicitly, the coefficients are determined by averaging
the velocity change of a test particle over all impact parame-
ters, and subsequently by averaging over all particle velocities
assuming that the velocity distribution is Maxwellian.

Figure 1: Envelopes and emittance growth functions of a
matched beam passing through the Cooler Synchrotron (COSY)
at KFA-Jülich. (The scale on the right-hand side applies to the
dimensionless emittance growth functions.)

As the result of the averaging procedures,�f is given by[2,
4]:
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In order to gain a better physical insight, this quantity can be
expressed alternatively as
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with �tscattering denoting the average time between two suc-
cessive scattering events of a beam particle, and� the coupling
constant of the beam plasma.

As an example, we present an integration of the coupled
set (4) based on the structure data of the J¨ulich Cooler Syn-
chrotron (COSY). The beam parameters used in that calculation
are listed in Tab. 1. The results, namely the envelopes and the
emittance growth functions along one turn, are plotted in Fig. 1.
We observe that the maximum growth of the rms-emittance oc-
curs in thex-direction, whereas for these initial conditions prac-
tically no growth occurs in the longitudinal direction.



Table 1: List of Parameters for the COSY intra-beam scattering
estimation

ion species H1+

energy 38 MeV/amu
period lengthS 183.47 m
horizontal tuneQh 2:23
vertical tuneQv 2:35

�av = 
�2 � 
�2

t 0:371

average beam currentI 55 mA
initial RMS emittances"x;y(0) 5� 10�6 m
initial RMS momentum spread�p=p 5:8� 10�4

ellipticity Ixy 3:252
ellipticity Ixz 2:286
ellipticity Iyz 0:997
friction coefficient�f 4:1935 s�2

horiz. emittancee-folding time�x;ef 15:0 s
vert. emittancee-folding time�y;ef 43:0 s
momentum spreade-folding time�z;ef 336:1 s
total emittancee-folding time�ef 32:8 s

6 BEAM TRANSPORT SIMULATIONS

As has been mentioned in the introduction, the Fokker-Planck
description of stochastic phenomena in the physics of charged
particle beams is not restricted to the effect of intra-beam scat-
tering, but applies to any beam dynamical Markov process. As a
consequence, the coupled set of moment equations (4) can also
be used to explain effects due to random errors generated by the
necessarily limited accuracy of computer simulations of parti-
cle beams. Especially the problem of calculating the self-fields
of arbitrary charge distributionsescapes an analytical treatment.
The major sources of random errors common to all simulation
codes come from the fact that

� the continuously varying self-fields must be replaced by
stepwise constant ones,

� the number of simulation particles is much smaller than
the real beam particle number.

The joint effect of all these simplifications necessary to keep
the computing time finite can be visualized in the way that an
additional `error field' of a certain amplitude is added to the
`true field' of the real beam. This causes a specific `simulation
friction coefficient'�f;sim to emerge. Unfortunately, it seems
to be impossible to derive a general formula relating globally
�f;sim to the various sources of `numerical noise' .

In Fig. 2, the emittance growth factors obtained by numeri-
cal simulations of a quadrupole channel are plotted for different
numbers of space charge calculations (SSC) per cell and dif-
ferent numbersP of simulation particles. It can be observed
that the calculated growth rates do not depend very much on
the number of space charge calculations. This indicates that in
this case the number of 50 space charge calculations suffices to
approximate the continuously varying self-fields. On the other
hand, the growth rate is halfed if we double the number of sim-

ulation particles from5000 to 10000, i.e.

�f;sim / P�1 :

This shows that in our case the concept of representative parti-
cles constitutes the major source of numerical noise.

For a comparison, the lower curve in Fig. 2 displays the cal-
culated growth rates for a matched beam transformed under the
same conditions through a periodic solenoid channel. Conse-
quently,�f;sim must have the same value as for the correspond-
ing quadrupole channel transformation. Nevertheless, no rms-
emittance growth at all is observed in this simulation. This out-
come is explained by Eq. (12), which states that even a positive
�f does not lead to an increase of the rms-emittance if the ellip-
ticity integral (11) vanishes. We conclude that numerical noise
phenomena occurring in computer simulations of charged par-
ticle beams can adequately be described by the Fokker-Planck
approach.

Figure 2: Emittance growth functions obtained by different nu-
merical simulations of a matched beam passing through the GSI
experimental quadrupole channel.

7 CONCLUSIONS

The moment description of a charged particle beam has been
demonstrated to be useful even if additional stochastic effects
must be taken into account. It has been shown that this approach
leads to a fairly simple formula which can be used to estimate
the growth rates of the beam emittances caused by intra-beam
scattering effects. Moreover, since the Fokker-Planck equation
describes any Markov process, certain effects of rms-emittance
growth in computer simulations can also be explained by this
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