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Abstract

The correction of the non-linear chromaticity with sextupoles
families is explained by means of a simple perturbation theory.
The advantages and limitations of such systems are shown, as
well as the constraints they put on machine optics.

I. Introduction

The non-linear chromaticity of the LEP machine at CERN has
been successfully corrected with sextupole families for a large
variety of different lattices. It works actually so well that the sub-
tleties in this correction have been completely forgotten.

As this type of correction was proposed a long time ago, it is
presently felt that more modern systems are better. At the Wash-
ington conference in 1993, it was stated that non-linear chro-
maticity correction of the B-factory PEP2 project with sextupole
families was not possible [1]. In fact such a statement might
mean that the machine lattice was simply not suitable for such
a correction or that the sextupole families were wrongly chosen.

In what follows, the computation of the second derivative of
the tune with respect to momentum is recalled first. Then the
contribution of periodic chromatic perturbations are estimated.
Finally practical applications on how to use sextupole families
as well as tolerances concerning the optics to make this use pos-
sible are given.

II. Second derivative of the tune with respect to
momentum.

When low-� insertions sit at places where the dispersion func-
tion is zero, a local correction of their chromaticity is not possi-
ble. Consequently an off-momentum mismatch of the insertions
appears. For certain tune values, this makes a very large second
order derivative of the tune with respect to momentum [2].

A. General expression of the second order tune derivative.

It is relatively straightforward to compute the chromatic de-
pendence of the linear optics parameters by computing the one-
turn 2�2 transfer matrix of a machine perturbed by chromatic
effects. The calculation is based on the change of the transforms
of the �-function due to gradient perturbations, which make it
possible to express easily the one-turn transfer matrix. This has
been shown in a previous accelerator conference [2]. We call �
the phase advance for one super-period in the machine � = 2�Q
if Q is the super-period tune. The ’ indicates the derivative with
respect to the relative momentum deviation. The second deriva-
tive of � with respect to momentum deviation � is given by :
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(Note that in reference [2], there was a miss-print in the �00 for-
mula : there was one term in excess. The correct formula is
the above one). In this formula, the terms on the first line come
from the first order tune-shift formula applied to the second order
chromatic perturbationper element, i.e. their value is of the same
order as the natural �0. � and � are the standard TWISS param-
eters [3] taken at an arbitrary origin in the lattice. It is assumed
that we are able to compute the transforms of these parameters
taking into account chromatic perturbations.

For the computation of the term containing squares, which is
the important one, what is needed is the first derivative of the
transform of the �-function with respect to �. This is an im-
portant point which had been suspected a long time ago [4], [5]
but only formalized only recently [2]. This first derivative is ob-
tained from the derivatives with respect to � of the integrated gra-
dients at the points of index i, which are @kili
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Taking the derivative of this expression with respect to the lon-
gitudinal coordinate, we obtain :
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These two expressions are exactly what is needed to compute the
important terms in formula (1). It is essential to recall that�0 and
�0 are not the derivatives of the optics functions with respect to
�, but they are related (not needed here).

In reference [2], the emphasis was put on the contributions of
the low-� quadrupoles which make Q” large. It was simply men-
tioned that the contributions of periodic cells was negligible. We
examine it now.

B. Contribution of periodic chromatic perturbations to the sec-
ond order tune derivative.

To obtain these contributions, we merely compute the sums in
equation (1) for @kili

@�
constant, i.e. not depending on the index

i. We obtain readily, keeping only the important term, i.e. that
one with cot� :
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The periodicityof the chromatic perturbationappears in its phase
�i which is given by :

�i = �0 + (i� 1)�c



�0 being the phase of the first perturbation and �c the phase be-
tween two successive perturbations. The sum of trigonometric
functions can be done easily, we obtain finally forn periodic per-
turbations :
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Such contributions to �00 produced for instance by the arc
quadrupoles and sextupoles are very small compared with that
of the low-� quadrupoles which is [2] :
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associated with the quadrupoles or the sex-
tupoles of the regular cells is usually smaller than (Kl�)2 by two
order of magnitude and sinn�c is smaller than one. Obviously
this only is true as long as sin�c is non zero. This is the case
when the chromaticity is corrected with one sextupole family per
plane in periodic cells, provided the cell phase advance is differ-
ent from �.

III. Making sextupole families.
From the preceding argument, we see that if the periodicity of

the gradient perturbation is a multiple of �, the fraction sinn�c

sin �c

is equal to n, so that their contribution is multiplied by n2. If n
is of the order of 10, we see that two order of magnitude can be
gained. This can be achieved by forcing the sextupole periodic-
ity to be an odd multiple of �. To make this possible, �c must be
an odd multiple of �

k
, where k is a small integer different from 1.

Then it is possible to assign the same strength to sextupoles sepa-
rated by k cells, i.e. to build up k sextupole families and to force
the sextupole periodicity to be � by assigning different strengths
to the families. Under those conditions, sextupole families are
an efficient way of making large higher order tune derivatives,
especially in large machines thanks to the factor n2.

For the particular case where it is possible to distribute the sex-
tupoles in families with equal numbers of members, their contri-
bution to �00, forgetting the quadrupole contributions, is given
by :
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with : �i = k0jljDj�i (5)

j is the index of the sextupole families which contain n sex-
tupoles each, Dj is the value of the dispersion function at the
sextupole locations and �0j is the phase of the first sextupole of
each family. For k�c multiple of �, we find the factor n2 in front
of the formula. For �i independent of i, the sums of trigometric
functions are zero.

This formula gives a good idea on the mechanism of sec-
ond order chromaticity correction with sextupole families. For
a practical correction of the non-linear chromaticity, it is neces-
sary to go to a higher order expansion. In fact other perturbation

formalisms have been developed for a long time, as [6]. Nev-
ertheless the above formulae tells us that it is important to com-
pensate the first order derivatives of the �-functions when such
a correction of the higher order tune derivatives is computed.

IV. Tolerance on the phase advance per cell for
periodic sextupole families.

A. General conditions

If the phase advance per cell is not an odd multiple of �

k
where

k is any integer, the factor n2 disappears. This is what happens
for instance if the phase of the regular cells are used to adjust the
tunes. The sextupole families have been constructed for a cer-
tain value of the phase advance of the regular and this phase ad-
vance per cell is subsequently “slightly changed”. As a conse-
quence, nk�c may become close to a multiple of �, k�c being
not a multiple of �, and the sextupole families loose completely
their efficiency as their important contribution to the non-linear
chromaticity becomes close to zero.

B. The LEP example

A first good example of non working periodic sextupole fami-
lies is that of the first LEP lattice [7]. In a superperiod of this ma-
chine there was one arc with 30 FODO cells with dipoles and one
low-� insertion. The phase advance of the arc cells was “about
60� ”. It was in fact exactly 60� in the horizontal plane but it
was close to 55� in the vertical plane. The number of cells be-
tween two successive sextupoles in a given family was set to 3
because of the “about 60� ” per cell. This makes 10 sextupoles
per family. Then, for the vertical plane, nk�c is 550� which is

very close to 3�. The factor
h
sinnk�c

sin k�c

i2
becomes 3.7 instead of

100, which annihilates the effect of the sextupole families in the
vertical plane. This was noticed at the time of the first LEP study
and non periodic sextupole families were used to correct the non-
linear chromaticity of this lattice.

A second good example is that of the second LEP lattice [8].
The horizontal phase advance per cell was 60� and the vertical
one was 62.1�. The latter is closer to 60� than in the first de-
sign, which made it possible to use periodic families with five
sextupoles per family (12 families total).

These cases of phase advances per cell slightly different from
60� for the case of 10 sextupole per family is instructive. For
phase of 57.3� or 62.7�, a factor two is lost in the contribution of
the sextupole families. This makes sextupoles increments twice
as large for correcting the same effect. Consider a case where
the increments of the sextupole strength of the family which has
to be increased are about 30% with a 60� phase advance. For
57.3�, they have to be increased by 30% more, which makes
the dynamic aperture decrease substantially. For the case of 55�

quoted above, the factor 100

3:7
is so large that the correction of the

non-linear chromaticity becomes marginal even for a large in-
crease of the sextupole strengths, with the consequence that the
dynamic aperture becomes dramatically low [7].

C. Number of sextupoles per family

From formula (5), it is clear that the larger the number of sex-
tupoles per family, the smaller the tolerance on the phase ad-



vance per cell to make the correction of the non-linear chromatic-
ity possible. For instance, for 100 sextupoles per family and a
phase advance per cell close to 60� , the efficiency, defined for
instance by the ratio sin n�c

n sin �c
, goes to zero for a phase advance per

cell of 59.4�. Such a tight tolerance can be avoided by increas-
ing arbitrarily the total number of sextupole families in the case
where the number of cells per superperiod is large.

On the opposite, for a small number of cells, the tolerance on
the phase advance is much relaxed. For three sextupoles per fam-
ily, the efficiency of the system looses is reduced by 10% for a
phase of about 55�!

V. Sextupole families for out of phase cells

For a case where there it is absolutely necessary to have a
phase advance per cell incompatible with periodic families, non-
periodic families can be a solution. The best example known to
the author is that of the first LEP design [7] quoted above. For
this case, the families arrangement is like :

1 2 x 1 2 2 1 x 2 1 1 2 3 1 2 3 1 3 2 1 3 ....
where 1 to 3 refer to the family number and x to a missing sex-

tupole. Such an arrangement has been obtained by inspecting the
modulation of the �y function at the sextupole location on an off-
momentum closed orbit and assigning the sextupoles with the
same modulation to the same family. An additional rule to obtain
a satisfactory system is to make pairs of sextupoles separated by
about � phase advance, in order not to produce too much geo-
metric aberrations. It is clear that such a system works only for
a given phase advance once it is built, which reduces the lattice
flexibility.

VI. Conclusion

Correcting the non-linear chromaticity with sextupole fami-
lies is easy and powerful when a machine is designed with a
number of regular cells having a phase advance equal to an odd
number of �

k
where k is any integer. On top of the designed

correction, they provide a simple knob to adjust experimentally
the second order tune derivative. Depending on the number of
sextupoles per super-period, there is more or less flexibility for
changing the machine tune by means of the quadrupoles in the
regular cells. The best lattice design to fully exploit the the po-
tentialities of sextupole families is always to make tunable inser-
tions to avoid changing the machine tune with the quadrupoles
in the regular cells.

With the phase advance per cell chosen as specified above, the
second order geometric aberrations are automatically zero pro-
vided there is an even number of sextupoles per family and the
same phase advance in both planes [9]. The remaining problem
is then the anharmonicities. From the experience with LEP, this
is a serious problem only for strong focusing lattices. Some ex-
amples can be found at this conference [10].
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