Non-linear Chromaticity Correction with Sextupole Families

André Verdier, CERN CH1211 Geneva 23

Abstract

The correction of the non-linear chromaticity with sextupoles
families is explained by means of a simple perturbation theory.
The advantages and limitations of such systems are shown, as
well as the constraintsthey put on machine optics.

[. Introduction

Thenon-linear chromaticity of the LEP machine at CERN has
been successfully corrected with sextupole families for a large
variety of different lattices. It worksactually sowell that the sub-
tletiesin this correction have been completely forgotten.

Asthistype of correction was proposed along time ago, it is
presently felt that more modern systems are better. At the Wash-
ington conference in 1993, it was stated that non-linear chro-
maticity correction of the B-factory PEP2 project with sextupole
families was not possible [1]. In fact such a statement might
mean that the machine lattice was simply not suitable for such
acorrection or that the sextupole families were wrongly chosen.

In what follows, the computation of the second derivative of
the tune with respect to momentum is recalled first. Then the
contribution of periodic chromatic perturbations are estimated.
Finally practical applications on how to use sextupole families
aswell astolerances concerning the optics to make this use pos-
sibleare given.

I1. Second derivative of the tune with respect to
momentum.

When low-£ insertionssit at placeswherethedispersionfunc-
tioniszero, alocal correction of their chromaticity is not possi-
ble. Consequently an off-momentum mismatch of theinsertions
appears. For certain tunevalues, thismakes a very large second
order derivative of the tune with respect to momentum [2].

A. General expression of the second order tune derivative.

It is relatively straightforward to compute the chromatic de-
pendence of the linear optics parameters by computing the one-
turn 2x 2 transfer matrix of a machine perturbed by chromatic
effects. The calculation isbased on the change of the transforms
of the -function due to gradient perturbations, which make it
possibleto express easily the one-turn transfer matrix. Thishas
been shown in a previous accel erator conference [2]. We call
the phase advance for one super-periodinthemachine i = 27Q
if Qisthe super-periodtune. The’ indicates the derivative with
respect to the rel ative momentum deviation. The second deriva
tive of 1 with respect to momentum deviation é isgiven by :
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(Notethat in reference [2], there was amiss-print in the i/’ for-
mula : there was one term in excess. The correct formulais
the above one). In thisformula, theterms on thefirst line come
fromthefirst order tune-shift formulaappliedto the second order
chromatic perturbation per element, i.e. their valueisof thesame
order asthe natural 1’. « and /5 are the standard TWISS param-
eters[3] taken at an arbitrary originin thelattice. It is assumed
that we are able to compute the transforms of these parameters
taking into account chromatic perturbations.

For the computation of the term containing squares, which is
the important one, what is needed is the first derivative of the
transform of the g-function with respect to §. Thisis an im-
portant point which had been suspected along time ago [4], [5]
but only formalized only recently [2]. Thisfirst derivativeisob-
tained fromthederivativeswithrespect tod of theintegrated gra-
dients at the points of index ¢, which are 2. We obtain [4] :
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Taking the derivative of this expression with respect to the lon-
gitudina coordinate, we obtain :
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These two expressions are exactly what isneeded to compute the
importanttermsinformula(l). Itisessentia torecal that 5’ and
o’ are not the derivatives of the optics functionswith respect to
4, but they are related (not needed here).

In reference [2], the emphasis was put on the contributions of
thelow- 5 quadrupoleswhichmake Q” large. 1t wassimply men-
tioned that the contributionsof periodic cellswas negligible. We
examine it now.

B. Contribution of periodic chromatic perturbationsto the sec-
ond order tune derivative.

To obtain these contributions, we merely compute the sumsin
equation (1) for 22 constant, i.e. not depending on the index
i. We obtain readlly keeping only the important term, i.e. that
one with coty :
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The periodicity of thechromatic perturbationappearsinitsphase
1; whichisgivenby :

pi = po + (i = 1)pe



1o being the phase of thefirst perturbation and p. the phase be-
tween two successive perturbations. The sum of trigonometric
functionscan be doneeasily, weobtainfinally for » periodic per-
turbations:

sinp. 96

1 sin nu. Okl 2
Wia =7 tﬂ[ . ] €©)
Such contributions to p”” produced for instance by the arc
quadrupoles and sextupoles are very small compared with that

of thelow-5 quadrupoleswhichis[2] :

W'~ —(KIB)* cot 4
astheterm [ 2 5] associated with the quadrupoles or the sex-
tupolesof theregular cellsisusually smaller than (K13)? by two
order of magnitude and sin np. issmaller than one. Obviously
thisonly istrue as long as sin . isnon zero. Thisisthe case
when thechromaticity iscorrected with one sextupolefamily per
planein periodic cells, provided the cell phase advanceisdiffer-
ent from .

[11. Making sextupole families.

From the preceding argument, we see that if the periodicity of
the gradient perturbation is a multiple of «, the fraction %
isequal to n, so that their contributionis multiplied by n2. If n
isof the order of 10, we see that two order of magnitude can be
gained. This can be achieved by forcing the sextupole periodic-
ity to be an odd multipleof =. To makethispossible, ;.. must be
an odd multipleof =, where k isasmall integer different from 1.
Thenitispossibleto assign the same strengthto sextupol essepa
rated by & cells, i.e. tobuild up £ sextupolefamiliesand to force
the sextupol e periodicity to be 7 by assigning different strengths
to the families. Under those conditions, sextupole families are
an efficient way of making large higher order tune derivatives,
especialy in large machines thanks to the factor n2.

For the particular casewhereitispossibleto distributethe sex-
tupolesin families with equal numbers of members, their contri-
bution to ¢/, forgetting the quadrupole contributions, is given

by :
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j isthe index of the sextupole families which contain n sex-
tupoles each, D; is the value of the dispersion function &t the
sextupol e locations and 4 is the phase of the first sextupole of
each family. For k. multipleof &, wefind thefactor n? infront
of theformula. For x; independent of ¢, the sums of trigometric
functionsare zero.

This formula gives a good idea on the mechanism of sec-
ond order chromaticity correction with sextupole families. For
apractica correction of the non-linear chromaticity, it is neces-
sary to go to a higher order expansion. Infact other perturbation

formalisms have been developed for a long time, as [6]. Nev-
ertheless the above formulae tells us that it isimportant to com-
pensate the first order derivatives of the 3-functions when such
a correction of the higher order tune derivativesis computed.

IV. Tolerance on the phase advance per cell for
periodic sextupole families.

A. General conditions

If the phase advance per cell isnot an odd multipleof 7 where
k isany integer, the factor n? disappears. Thisiswhat happens
for instanceif the phase of theregular cellsare used to adjust the
tunes. The sextupole families have been constructed for a cer-
tain value of the phase advance of theregular and this phase ad-
vance per cel is subsequently “dlightly changed”. As a conse-
guence, nk . may become close to a multiple of =, k. being
not a multipleof =, and the sextupole families |oose completely
their efficiency as their important contribution to the non-linear
chromaticity becomes close to zero.

B. The LEP example

A first good exampl e of non working periodic sextupol efami-
liesisthat of thefirst LEP lattice[7]. In asuperperiod of thisma-
chinetherewas onearc with 30 FODO cellswith dipolesand one
low-73 insertion. The phase advance of the arc cells was “about
60° . It was in fact exactly 60° in the horizontal plane but it
was close to 55° in the vertical plane. The number of cells be-
tween two successive sextupolesin a given family was set to 3
because of the “about 60° " per cell. This makes 10 sextupoles
per family. Then, for the vertical plane, nkp. is550° which is
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very closeto 3r. The factor [ STV } becomes 3.7 instead of

100, which annihilatesthe effect of the sextupolefamiliesin the
vertical plane. Thiswas noticed at thetime of thefirst LEP study
and non periodic sextupol efamilieswere used to correct thenon-
linear chromaticity of thislattice.

A second good example isthat of the second LEP lattice [8].
The horizontal phase advance per cell was 60° and the vertical
one was 62.1°. The latter is closer to 60° than in the first de-
sign, which made it possible to use periodic families with five
sextupoles per family (12 familiestotd).

These cases of phase advances per cell dightly different from
60° for the case of 10 sextupole per family isinstructive. For
phase of 57.3° or 62.7°, afactor twoislost in the contribution of
the sextupol efamilies. This makes sextupolesincrements twice
as large for correcting the same effect. Consider a case where
the increments of the sextupol e strength of the family which has
to be increased are about 30% with a 60° phase advance. For
57.3°, they have to be increased by 30% more, which makes
the dynamic aperture decrease substantially. For the case of 55°
guoted above, thefactor % isso large that the correction of the
non-linear chromaticity becomes marginal even for alarge in-
crease of the sextupole strengths, with the consequence that the
dynamic aperture becomes dramatically low [7].

C. Number of sextupoles per family

Fromformula(5), it isclear that the larger the number of sex-
tupoles per family, the smaller the tolerance on the phase ad-



vance per cell tomakethe correction of the non-linear chromatic-
ity possible. For instance, for 100 sextupoles per family and a
phase advance per cell close to 60° , the efficiency, defined for
instance by theratio >="£= goesto zero for a phase advance per
cell of 59.4°. Such atightctolerance can be avoided by increas-
ing arbitrarily the total number of sextupolefamiliesin the case
where the number of cells per superperiodislarge.

On the opposite, for a small number of cells, the tolerance on
the phase advanceismuch relaxed. For three sextupol esper fam-
ily, the efficiency of the system loosesis reduced by 10% for a
phase of about 55°!

V. Sextupole familiesfor out of phase cells

For a case where there it is absolutely necessary to have a
phase advance per cell incompatiblewith periodic families, non-
periodic families can be a solution. The best example known to
the author isthat of the first LEP design [7] quoted above. For
this case, the families arrangement islike:

12x1221x2112312313213....

where 1to 3 refer to thefamily number and x to amissing sex-
tupole. Such an arrangement has been obtained by inspecting the
modulation of the 3, functionat the sextupol elocation on an off-
momentum closed orbit and assigning the sextupoles with the
same modulationto the same family. Anadditional ruleto obtain
asatisfactory system isto make pairs of sextupolesseparated by
about 7 phase advance, in order not to produce too much geo-
metric aberrations. It isclear that such a system works only for
agiven phase advance once it is built, which reduces the | attice
flexibility.

V1. Conclusion

Correcting the non-linear chromaticity with sextupole fami-
lies is easy and powerful when a machine is designed with a
number of regular cells having a phase advance equa to an odd
number of - where & is any integer. On top of the designed
correction, they provide a simple knob to adjust experimentally
the second order tune derivative. Depending on the number of
sextupoles per super-period, there is more or less flexibility for
changing the machine tune by means of the quadrupolesin the
regular cells. The best lattice design to fully exploit the the po-
tentialitiesof sextupolefamiliesisawaysto make tunableinser-
tions to avoid changing the machine tune with the quadrupoles
intheregular cells.

With the phase advance per cell chosen as specified above, the
second order geometric aberrations are automatically zero pro-
vided there is an even number of sextupoles per family and the
same phase advance in both planes[9]. The remaining problem
isthen the anharmonicities. From the experience with LER, this
is a serious problem only for strong focusing lattices. Some ex-
amples can be found at this conference [10].
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