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Abstract

There are three logically independent facets to calculating the
transfer map through a bend magnet: physics, geometry, and
representation. We will derive the exact map for transit through
ideal bends while separating these three, esp., isolating the ge-
ometry problem from the other two.

I. INTRODUCTION
Writing the exact transfer map through ideal bend magnets

requires considerations of physics, geometry, and the particular
representation in which a particle's state is expressed. Although
logically independent, these are frequently mixed together. We
will attempt to separate them. It is likely that many people have
already gone through this exercise for themselves, but it may be
worth repeating.1

II. PHYSICS
We all learned the relevant physics as undergraduates. A

charged particle in a constant magnetic field,~B, travels at con-
stant speed on a helix aligned along the field. Since the particle
experiences no acceleration in the direction of~B,

zk(tf ) = zk(ti) + vk�t ; (1)

where the subscript “k” stands in for the appropriate coordinate
projection, and�t = tf � ti is the time spent in the magnetic
environment. The (radial) frequency of travelling around the
helix is,

! = j eB=
m j ;

in rationalized mks units, where,e is the charge of the particle,
m is its mass, and
 = 1=

p
1� �2 = E=mc2 is the usual

relativistic factor. Projected onto a plane orthogonal to~B, the
helical orbit becomes a circle of radius�,

� = j p?=eB j ;

wherep? is the projection of the particle's momentum onto the
plane orthogonal to~B.

This is all we need. In the sections to follow we will complete
the derivation by (a) solving a few elementary geometry prob-
lems and (b) writing the answers in theacceleratorphysicists'
representation.

III. GEOMETRY
The natural Cartesian chart for expressing the geometry,

which we will call the “Z-chart,” has its origin on the helical

�Operated by the Universities Research Association,Inc,under contract with
the U.S. Department of Energy
1The point of doing something this simple is to be reminded that itis simple.

axis with one coordinate axis parallel to it. Following a standard
convention, for bending magnets we choose thez2-axis parallel
to ~B, while for solenoids, we would alignz3 along the~B, so
that in both cases the largest component of momentum is along
thez3 axis. (Please refure to Figures 1 through 3 repeatedly for
visualization of the charts in this paper.) Because it is easiest
to work with the transverse equations in terms of spinors, we
define complex coordinatesz � z3 + iz1, for bend magnets, or
z � z1+ iz2, for solenoids, and write the transversely projected
dynamics in either case as follows.2

z = �ei� ; � 2 [��; �) ; (2)

_z = �i!z : (3)

The time taken to cross the magnetic environment is clearly
�t = ���=!, and we will address below the purely geometric
problem of calculating��.

A difficulty arises because the orbit is not viewed from the
Z-chart but from two local charts, sayUi andUf , which we will
call the “initial” and “final” charts, or, alternatively, the “in” and
“out” charts. Although these are, in principle, arbitrary, for prac-
tical applications, each typically has an axis aligned along~B: u2
for bends, andu3 for solenoids.3 In the treatment that follows
we will handle only the bend-magnet configuration explicitly,
leaving the easier problem of solenoids to the reader.

For bending magnets, then, the(u1; u2) plane (i.e.,u3 = 0) is
considered the “transverse plane” or “face” of the chart, called
so because it is usually considered to be transverse to the local
fiducial reference curve, not to the magnetic field. Normally
one thinks of the in-face and out-face as located at the edges of
the magnet, but this need not be the case; they could be within
the body. All that is necessary is that in traversing the region
between the faces, the particle is exposed to the environment of
a constant magnetic field. We need to establish chart coordinates
for two events,viz.,the orbit's intersecting the in- and out-faces,
the transverse planes ofUi andUf . The function which converts
coordinates of the first event, onUi, to those of the second, on
Uf , is the transfer map for the region.

The time�t appearing in Eq. 2 is nothing but the time interval
between these events,

2This definition does have the disadvantage of making_� negative in Eq. 3,
and, later,�� = �f � �i negative rather than positive. I've chosen this rather
than the less awkwardz � z1 + iz3 for three reasons, not one of which is
particularly compelling: (a) it preserves the cyclic ordering of the(z1; z2; z3)

triplet, (b) at least in the U.S., accelerator physicists align the “3” axis along
the (fiducial) beam current and the “1” axis outward, (c) being at Fermilab, I
am accustomed to thinking of beam current as circulating clockwise, and (d)
physicists think of time dependence ase�i!t .
3This restriction could be removed, but the resulting equations would then

have to be solved numerically. In any case, it would not conform to any practical
application.
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Figure 1. Helical orbit in a constant magnetic field, as viewed
from a local chart in (a) a bend magnet and (b) a solenoid.
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Figure 2. Complex parametersb and�.

Since motion along~B is taken care of, we can confine our
attention to the projection of the orbit on a plane orthogonal to
~B in order to calculate�t and everything else that we need.
The geometric problem we must solve requires nothing more
complicated than representing circles and lines in a plane. The
transformation which takes us from aU -chart to theZ-chart
is written easily in the spinor notation, usingu � u3 + iu1.
Referring to Figure 2, we have

z = b+ uei� ; (4)

_z = _uei� ; (5)

whereb is theZ-chart spinor coordinate of theU -chart's origin,
and� is the angle of theu3 axis relative to thez3. Our task now
is to represent the very simple motion embodied in Eq. 3 on the
U charts and thereby obtain the transfer mapUi ! Uf . This
proceeds in two steps, each of which is a simple geometrical
problem: (A) obtainingbe�i� given u and _u, and (B) finding
the intersection of a line with a circle.

A. What isbe�i�?

First, using Eq. 4 and Eq. 3, we have

_z = �i!z = �i!( b + uei� ) :

Combining this with Eq. 5 yields

_u = _ze�i� = �i!u � i!be�i� ;

from which we obtainbe�i�.

be�i� = i _u=! � u (6)

B. Point of intersection between a line and a circle

We must solve for the point of intersection between theu1
axis of aU -chart and the orbit projection, which is the circle
written in Eq. 2. An arbitrary lineL(zo; �) passing through a
pointzo with direction� is the subset,

L(zo; �) = fzo + wei� j w 2 Rg

We easily solve for its intersection with a circle as follows.

zo +wei� = �ei�

w = e�i�( �ei� � zo )

Of course,w must be real, so that, by settingImw = 0, we can
find �.

sin(� � �) =
1

�
Im( zoe

�i� ) (7)

Applying this to aU -chart, we use the lineL(b; �+ �=2); that
is,L lies along the imaginary axis of the spinoru. In such cases
Eq. 7 becomes,

� = �+ �=2� arcsin(
1

�
Re( be�i� ) ); (8)

when _u is attached toL(b; � + �=2). We can write this yet
another way by applying Eq. 6 tou and _u evaluated along
L(b; �+ �=2). Thus,u will be pure imaginary, so that

� = �+ �=2 + arcsin( Im( _u)=j _uj ):

IV. OF MAGNETS AND MAPS
We are now ready to complete the construction of a transfer

map. Of course, on theZ-chart the “initial” and “final” spinor
coordinates are trivially related by a phase rotation.

zf = zie
i��; _zf = _zie

i�� : (9)

Eq. 4 and Eq. 5 can now be used to obtainuf and _uf .

_uf = _uie
i(�����) (10)

uf = uie
i(�����) + (be�i�)i e

i(�����)

�(be�i�)f (11)

The complete transfer map,(ui; _ui) 7! (uf ; _uf) is now con-
structed according to the following procedure.

Bend algorithm
Step 1. Use Eq. 6 to evaluate(be�i�)i.

(be�i�)i = i _ui=! � ui:

Step 2. Given (be�i�)i, from Step 1, construct(be�i�)f us-
ing the relative in-face to out-face geometry. We will illustrate
below how to do this.
Step 3. Calculate�� ��� by applying Eq. 8 to both faces.

�� ��� = arcsin
�
Re( be�i� )i=�

�
� arcsin

�
Re( be�i� )f=�

�
(12)

Step 4. Finally, use Eqs.10 and 11 to complete the map. Notice
that �� � �� appears only in the argument of an exponent.
Rather than use Eq. 12 directly we can employ

ei(�����) =

p
1� (Re( be�i� )i=�)2 + iRe( be�i� )i=�p
1� (Re( be�i� )f=�)2 + iRe( be�i� )f=�

:
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Figure 3. Relationships between theUi, Uf , andZ charts.

A. Rectangular bends

Detailed information about the magnet's geometry, embodied
in the relative placements of the in- and out-faces, is used in Step
2. The simplest possibility is the rectangular bend. We take the
“in” and “out” faces to be parallel, so that�i = �f � �: From
the obvious relation,bf = bi + Lei�; whereL is the length of
the magnet, we obtain the result,

( be�i� )f � ( be�i� )i = L ; (13)

which is to be fed directly into Step 3.

B. Sector bends

Sector bends are only a little more complicated but easily han-
dled by representing, on theZ chart, the point of intersection be-
tween the imaginary axes of theUi andUf charts. To position
these, we place the face of each orthogonal to a local, fiducial
path that would be followed by an “ideal” particle. Let�� sym-
bolize its radius of curvature. Further, placing the origins of the
U -charts on the fiducial path the intersection point has coordi-
nate�i�� on each chart. Thus, using Eq. 4, we have,

( be�i� )f � ( be�i� )i = ( 1�e�i�� )( i��� ( be�i� )i ) : (14)

We note in passing the usual relation between��, ��, and mag-
net length,L, recalling that, by our convention,�� < 0;

e�i�� =
�p

1� (L=2��)2 + iL=2��
�2

: (15)

KeepingL fixed and letting��!1 then reproduces Eq. 13.

C. Arbitrarily angled faces

The in- and out- faces can be rotated through additional an-
gles. If we use the MAD convention for specifying anglese1 and
e2, effectively we must replace�i ! �i+e1 and�f ! �f �e2
in Eq. 14. The result then looks as follows.

( be�i� )f = ( be�i� )ie
�i�� + i��(e�ie2 � eie1e�i��)

Settinge1 = �e2 = ��=2 and using Eq. 15 again reproduces
Eq. 13.

V. REPRESENTATION
The final complication arises when we insert the accelerator

physicists' coordinate representation into these expressions. A
particle's crossing the plane of a “face” is typically recorded us-
ing momentum and energy coordinates normalized by the fidu-
cial. The position sector is recorded by transverse coordinates
x1, x2, and a time offset,c�� , while the momentum sector is
represented by normalized transverse components4 of ~q � ~p=�p,
and a total momentum offset, and� � j~pj=�p � 1. To apply the
bend algorithm, we need only write~v in terms of these and then
use the spinor_u = v3 + iv1.

Starting from,

~� = ~v=c = ~pc=E = ~q � �pc=E ;

we substitute

E2 = ~p2c2 +m2c4 = (�pc)2(1 + �)2 +m2c4 ;

to obtain
~� = ~q=

p
(1 + �)2 + (mc=�p)2 :

We can obtainv1 andv2 from this directly, but sinceq3 is not
recorded, we must getv3 by using the following.

E2 = ~p2c2 +m2c4 = ~p2?c
2 + p23c

2 +m2c4

E2 �m2c4

�p2c2
= (~q?)

2 + (q3)
2

�3 = q3=
p
� � �

=

s
(1 + �)2 � (~q?)2

(1 + �)2 + (mc=�p)2

Of course, there's even more fascinating material to wade
through, but we' re already up against the three page limit and
have no more space (see edge of page below). A finished ver-
sion will follow somewhere, sometime, but not here, and not
now.

4That is, the projections into the in- and out-faces.


