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Abstract Il .Scal ar Potenti al

In the paraxial approximation, trajectories of beam particles To expand the paraxial particle trajectory in powers ahdy
in a ring accelerator are computed expanded in powers of Ié@andx’ andy’ with prime indicatingd /d z) we need to first write
eral displacements and slopes from a closed reference orbit.thie magnetic field (considered static) in an expanded form. In
do this, one needs first the expanded expressions of the megsuum, the magnetic field can be expressed in terms of either
netic field and potentials producing the particle motion. This &scalar potentiap or a vector potentiah . It is simpler to start

derived here in a most general form. with the scalar potential. We shall write
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In a storage ring or a ring accelerator the ideal closed orbit is

generally a planar curve. All particles in the beam travel negjhere the coefficients, , = a,m(z) are functions ofz and
to the closed orbit. Thus, for the study of the particle motiofhe parenthesized superscripi indicates that the quantity is a
itis convenient to use the closed orbit as the reference axis 3fogeneous expressionsrandy of total degreen.

compute the particle trajectories in the paraxial approximation.The Laplace equation§/2¢ = 0, to be satisfied by is, in
The right-handed coordinates used are shown in Fig. 1 and g{gse coordinates,

described below. Also shown in Fig. 1 is the local radius of
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Straightforward but laborious expansiongdft kx) P factors
and realignments of indices give the following recursion formula
on indexm
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where, as before, prime meadgdz This is a rather messy
and obscure formula. It is instructive to look at the first two
recursions fon = 0 and 1,
n=20
) ) . Figure 1 —8mi2m+2 = 8mizm + K@miim + a-r,%,m, (5)
x: horizontal (in orbit plane) along the outward normal of the
closed orbit, y: vertical, z: horizontal and along the forward n=1

tangent of the closed orbit.
—8mt3m+2 = 8mia.m + Kamizm
curvaturep(z) and the center of curvature “C.” The metric of a1 m— Kal m — K2amism — 2Ka, . (6)

these rotating coordinates is ) ) )
These relations reveal clearly the hierarchy of the recursion.

ds? = dx% 4+ dy? + (1 + kx)?dZ, (1) Because of the double step recursiominthere are two sets
of solutions. The field with odeh values starting wittm = 1
where is symmetric with respect to the orbit plane and is the normal
k =k(2) = 1/p(2) = curvature. design field. The field with evem values starting withm = 0

is anti-symmetric with respect to the orbit plane and is the skew

field arising only from construction imperfections.
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11 . Ma gneti cFi el dConponents whereF = F(x,y; 2) andG = G(x, y; 2). The relationB =

i . V x A is, then
The components of the fieBl are given byB = V¢, or x
. B 1 (8G BF)
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On the orbit planey = 0, for the normal fieldh = odd) we
have

This shows thats or A, is given by B, and By, and thatF,
henceA, and Ay, are given byB,. Applying Euler's theorem
for homogenous forms to give® andG® in terms of B\,
By” and B, then substituting from Eq. (7) we get
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and for the skew fieldnj = even) we have
and
o Xn—l
Bx(y=0 = 30— X (1 kx _
By(y=0 = O © w1k
oo n Xn — <_+ )
B.(y=0 = Z wan'o ; n' n+l
2 n L 1 ey
The standard (American) multipole coefficients defined by Oa”vm [(n - m); - m—] n—m)!'m" (16)
m=
By +iBx=Bo) (bh+ia)(x+iy)", i=+v=1 (10) Egs. (12), (14), and (15) give the necessary expanded forms

of the vector potential components for insertion into either the

are related to the double indexed coefficiaqk by Lagrangian or the Hamiltonian function of the particle motion.
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(11) To proceed we could employ either the Lagrangian or the

an-1g Hamiltonian formulation. Here we present the simpler and more
a1 = ( ax“—1y> = Bo(n — 1)!b,_1. symmetric Lagrangian formulation. The orbit Lagrangian is
x=y=0
L, X, Y, Y:2) = [1+kx)?+x?% + y,2]1/2
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In the vector potentiah we choose the gauge?+y Ay = 0 = K(kinematic term+ D(dynamic term, (17)
(the equivalent ofA;, = 0 in the case of a linear reference orbit
and Cy|indrica| coordinates (9’ Z). Then we can write wheree and pare the Charge and the momentum of the particle.
The expanded forms d€ andD are
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where b
Bp = .= rigidity of the particle.

It is easy to show that to the first degree terms one gets the well-
known linear equations. To get the second- and higher-order
terms the procedure is equally straightforward but increases pro-
gressively in complexity.



