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Abstract

In the paraxial approximation, trajectories of beam particles
in a ring accelerator are computed expanded in powers of lat-
eral displacements and slopes from a closed reference orbit. To
do this, one needs first the expanded expressions of the mag-
netic field and potentials producing the particle motion. This is
derived here in a most general form.

I.Introduction

In a storage ring or a ring accelerator the ideal closed orbit is
generally a planar curve. All particles in the beam travel near
to the closed orbit. Thus, for the study of the particle motion
it is convenient to use the closed orbit as the reference axis and
compute the particle trajectories in the paraxial approximation.
The right-handed coordinates used are shown in Fig. 1 and are
described below. Also shown in Fig. 1 is the local radius of
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Figure 1
x: horizontal (in orbit plane) along the outward normal of the
closed orbit, y: vertical, z: horizontal and along the forward

tangent of the closed orbit.

curvatureρ(z) and the center of curvature “C.” The metric of
these rotating coordinates is

ds2 = dx2 + dy2 + (1 + kx)2dz2, (1)

where
k = k(z) = 1/ρ(z) = curvature.

∗ Work supported by U.S. Department of Energy, Office of Basic Energy
Sciences under Contract No. W-31-109-ENG-38.

II.Scalar Potential

To expand the paraxial particle trajectory in powers ofx andy
(andx′ andy′ with prime indicatingd/dz) we need to first write
the magnetic field (considered static) in an expanded form. In
vacuum, the magnetic field can be expressed in terms of either
a scalar potentialφ or a vector potentialA . It is simpler to start
with the scalar potential. We shall write

φ =
∞∑

n=0

n∑
m=0

an,m
xn−m

(n − m)!

ym

m!
≡

∞∑
n=0

φ(n), (2)

where the coefficientsan,m = an,m(z) are functions ofz and
the parenthesized superscript(n) indicates that the quantity is a
homogeneous expression inx andy of total degreen.

The Laplace equations,∇2φ = 0, to be satisfied byφ is, in
these coordinates,

−∂2φ

∂y2
= 1

1 + kx

∂

∂x

[
(1 + kx)

∂φ

∂x

]
+ 1

1 + kx

∂

∂z

(
1

1 + kx

∂φ

∂z

)
. (3)

Straightforward but laborious expansions of(1+ kx)−p factors
and realignments of indices give the following recursion formula
on indexm

−an+m+2,m+2 = an+m+2,m

+
n∑

l=0

(−k)l n!

(n − l )!
[kan−l+m+1,m + (l + 1)a′′

n−l+m,m

− (l + 1)(l + 2)

2
(n − l )k′a′

n−l+m−1,m], (4)

where, as before, prime meansd/dz. This is a rather messy
and obscure formula. It is instructive to look at the first two
recursions forn = 0 and 1,

n = 0

−am+2,m+2 = am+2,m + kam+1,m + a′′
m,m, (5)

n = 1

−am+3,m+2 = am+3,m + kam+2,m

+a′′
m+1,m − k′a′

m,m − k2am+1,m − 2ka′′
m,m. (6)

These relations reveal clearly the hierarchy of the recursion.
Because of the double step recursion inm, there are two sets
of solutions. The field with oddm values starting withm = 1
is symmetric with respect to the orbit plane and is the normal
design field. The field with evenm values starting withm = 0
is anti-symmetric with respect to the orbit plane and is the skew
field arising only from construction imperfections.



            
III.Ma gneticFieldComponents

The components of the fieldB are given byB = ∇φ, or

Bx = ∂φ

∂x
=

∞∑
n=1

n−1∑
m=0

an,m
xn−m−1

(n − m − 1)!

ym

m!
≡

∞∑
n=1

B(n−1)
x ,

By = ∂φ

∂y
=

∞∑
n=1

n∑
m=1

an,m
xn−m

(n − m)!

ym−1

(m − 1)!
≡

∞∑
n=1

B(n−1)
y ,

(7)

Bz = 1

1 + kx

∂φ

∂z

=
∞∑

n=0

n∑
l=0

n−l∑
m=0

(−k)l (n − m)!

(n − m − l )!
a′

n−l ,m

xn−m

(n − m)!

ym

m!

≡
∞∑

n=0

B(n)
z .

On the orbit planey = 0, for the normal field (m = odd) we
have

By(y = 0) =
∞∑

n=1

an,1
xn−1

(n − 1)!
,

(8)

Bx(y = 0) = Bz(y = 0) = 0,

and for the skew field (m = even) we have

Bx(y = 0) =
∞∑

n=1

an,0
xn−1

(n − 1)!
,

By(y = 0) = 0, (9)

Bz(y = 0) =
∞∑

n=0

n∑
l=0

(−k)l n!

(n − l )!
a′

n−l ,0
xn

n!
.

The standard (American) multipole coefficients defined by

By + i Bx = B0

∑
(bn + ian)(x + iy)n, i = √−1, (10)

are related to the double indexed coefficientan,m by

an,0 =
(

∂n−1Bx

∂xn−1

)
x=y=0

= B0(n − 1)!an−1,

(11)

an,1 =
(

∂n−1By

∂xn−1

)
x=y=0

= B0(n − 1)!bn−1.

IV.Vector Potential

In the vector potentialA we choose the gaugex Ax +y Ay = 0
(the equivalent ofAr = 0 in the case of a linear reference orbit
and cylindrical coordinates (r , θ , z). Then we can write

Ax = −yF, Ay = x F, Az = G

(1 + kx)
, (12)

whereF = F(x, y; z) andG = G(x, y; z). The relationB =
∇ × A is, then

Bx = 1

1 + kx

(
∂G

∂y
− x

∂F

∂z

)
,

By = 1

1 + kx

(
−∂G

∂x
− y

∂F

∂z

)
, (13)

Bz = x
∂F

∂x
+ y

∂F

∂y
+ 2F,

or

x
∂G

∂x
+ y

∂G

∂y
= (1 + kx)(yBx − x By),

(14)

x
∂F

∂x
+ y

∂F

∂y
+ 2F = Bz.

This shows thatG or Az is given by Bx and By, and thatF ,
henceAx and Ay, are given byBz. Applying Euler’s theorem
for homogenous forms to giveF (p) andG(p) in terms ofB(p)

x ,
B(p)

y andB(p)
z , then substituting from Eq. (7) we get

F =
∞∑

n=0

1

n + 2
B(n)

z

= 1

2
a′

0,0 +
∞∑

n=1

n∑
m=0

a′
n,m

n + 2

xn−m

(n − m)!

ym

m!
, (15)

and

G =
∞∑

n=1

(
1

n
+ kx

n + 1

) (
yB(n−1)

x − x B(n−1)
y

)
=

∞∑
n=1

(
1

n
+ kx

n + 1

)
×

n∑
m=0

an,m

[
(n − m)

y

x
− m

x

y

]
xn−m

(n − m)!

ym

m!
. (16)

Eqs. (12), (14), and (15) give the necessary expanded forms
of the vector potential components for insertion into either the
Lagrangian or the Hamiltonian function of the particle motion.

V. Lagrangian Formulation

To proceed we could employ either the Lagrangian or the
Hamiltonian formulation. Here we present the simpler and more
symmetric Lagrangian formulation. The orbit Lagrangian is

L(x, x′, y, y′; z) = [
(1 + kx)2 + x′2 + y′2]1/2

+ e

p

[
x′ Ax + y′ Ay + (1 + kx)Az

]
≡ K (kinematic term) + D(dynamic term), (17)

whereeandp are the charge and the momentum of the particle.
The expanded forms ofK andD are

K = (1 + kx)

[
1 + x′2 + y′2

(1 + kx)2

]1/2



         
= 1 + kx + 1

2

[ ∞∑
m=0

(−1)m(kx)m

] (
x′2 + y′2)

−1

8

[ ∞∑
m=0

(−1)m (m + 1)(m + 2)

2
(kx)m

] (
x′2 + y′2)2

+ · · · (18)

D = 1

Bρ

[
(y′x − x′y)F + G

]
= 1

Bρ
(y′x − x′y)

∞∑
n=0

n∑
m=0

a′
n,m

n + 2

xn−m

(n − m)!

ym

m!

+ 1

Bρ

∞∑
n=1

(
1

n
+ kx

n + 1

)
×

n∑
m=0

an,m

[
(n − m)

y

x
− m

x

y

]
xn−m

(n − m)!

ym

m!
, (19)

where
Bρ ≡ p

e
= rigidity of the particle.

It is easy to show that to the first degree terms one gets the well-
known linear equations. To get the second- and higher-order
terms the procedure is equally straightforward but increases pro-
gressively in complexity.


