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Abstract

Synchrotron radiation has been traditionally treated as an effect
which only depends on the linear beam dynamics. Electrons
in advanced accelerators and storage rings, however, can lose
several percent of their energy in one turn, especially when the
ring incorporates synchrotron radiation sources or free electron
lasers. In these machines nonlinear effects can become impor-
tant, not only because of the high variation of the particle’s en-
ergy around the ring, but also because of the necessity to have
very good beam quality in wigglers, undulators, and free elec-
tron lasers. Since these instruments can have helical structure,
a general reference frame with torsion is used and the Lorenz–
Dirac radiation reaction of the charged particle is taken into ac-
count. We will utilize the Differential Algebra technique to com-
pute nonlinear transfer maps of general optical elements. Ap-
plications include radiation damping in multipoles, its effect on
closed orbit distortion in a storage ring, and nonlinear tune shifts
due to various radiating devices. The software provided will also
be useful in simulating Siberian snakes.

I. INTRODUCTION

If the energy of a charged particle is conserved, the equations
of motion are Hamiltonian. The Hamiltonian structure of these
equations implies that their flows are symplectic. The symplectic
symmetry poses several constraints on the motion. Liouville’s
theorem is an especially famous consequence of this property. If
energy is lost during the motion, as in the case of electrons in
a storage ring, the equations of motion are not Hamiltonian and
knowledge about symplectic flows cannot be applied. If one sets
out to describe high energy electron motion, it is therefore best
not to start with a Hamiltonian but directly with the equation of
motion. It is, however, not sufficient to solve the Hamiltonian
equations of motion without radiation and to simulate an effec-
tive loss of energy after each dipole, since the phase space de-
pendence of the lost energy is essential even in the linear theory
[1]. The general equation of motion for charged particle optics,
especially when used to compute highly energetic electron mo-
tion, should therefore include the energy loss due to radiation and
the reaction of the particle to is own electromagnetic field.

The behavior of a charged particle in the superposition of an
external field and its own retarded field cannot be described with-
out problems [2], [3], [4], the classical limit is discussed in [5].

After an appropriate average in the Lorentz–Dirac equation,
we reformulate the equations in such a way that they have a suit-
able form for the conventional description of particle optics. We
will keep the argumentation completely general and allow refer-
ence curves with torsion. Thus we obtain the equations of motion
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with path length along some space curve as the independent pa-
rameter. These are the general equations of motion for describ-
ing charged particle optics.

To solve these equations of motion, we implemented the
method of Taylor maps, which are computed with the Differen-
tial Algebraic (DA) technique. In standard devices like dipoles,
quadrupoles, and higher order multipoles the equation of motion
can be integrated with an exponential operator, such that the full
power and speed of the DA method is obtained even with radia-
tion effects.

II. THE LORENTZ–DIRAC EQUATION
To analyze the influence of radiation effects on particle motion

consistently, we have to consider the field produced by a moving
charged particle. Then we can compute the particle motion under
the influence of its own field and an external field. To derive this
equation, one can proceed in the following steps:

1. Derive the small velocity limit.
2. Write the general and covariant form of the equations of

motion which satisfies the low velocity limit.
3. Reformulate the differential equation into an integral equa-

tion.
4. Approximate the integral equation.
5. Transform the covariant equation into a specific inertial

frame.
These steps can be extracted from the references mentioned.

As a result one obtains the equation of motion
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with the external force ~F = q(~E +~v� ~B) . In particle optics
we require an equation of motion of the form ~z0 = ~f(~z; s) for
phase space variables ~z. It indeed turns out that such a formula-
tion is possible. After introduction of
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We can expand to the first power of �j~F j and obtain
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This expansion is valid even for very high energy. For an
electric field of 107 V

m
, this electron energy would be around

2700GeV. For a magnetic field of 10T, this energy is about
150GeV.

III. THE CURVILINEAR COORDINATE
SYSTEM

We want to introduce a coordinate system with which particle
motion close to some reference curve ~R(s) parameterized by its
path length s can be described well. For that purpose one defines
s dependent unit vectors~ex and~ey in such a way that close to this
curve space points ~r can be expressed as

~r = ~R(s) + x~ex(s) + y~ey(s) (6)

and the unit vectors ~es = @s ~R, ~ex, and ~ey build a right handed
coordinate frame. The reference curve’s curvature � can have x
and y components �x and �y. There are three reasonable possi-
bilities with different forms for their s derivatives.

1. The horizontal system in which one chooses~ex always per-
pendicular to one fixed space direction ~e1:

d
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)~ey + (1 + x�x + y�y)~es :

2. The Frenet coordinate system in which one chooses the ~ex
direction always parallel to the curvature vector, which ro-
tates around the reference curve with the torsion T :

d

ds
~r = (x0 � yT )~ex + (y0 + xT )~ey + (1 + x�)~es : (8)

3. The curvilinear system in which the effect of the torsion is
compensated by a reversed rotation [6]. In this case the ori-
entation of the coordinate system at s depends on the his-
tory of the torsion between 0 and s and is therefore not de-
fined locally. This disadvantage can be compensated by the
simplicity of

d
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IV. THE LORENTZ–DIRAC EQUATION IN
CURVILINEAR COORDINATES

In this coordinate system we therefore have

h = 1+ x�x + y�y ; (10)
d

ds
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~p = px~ex + py~ey + ps~es ;
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We use standard particle optical phase space coordinates
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where subscripts 0 refer to a reference particle, which in gen-
eral does not have to follow the reference curve ~R(s) however.
By defining

E = Exa+Eyb+ Es
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the general equations of motion which are obtained with
ds=dt = v=h � ps=p simplify to
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where the damping terms are
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It is worth mentioning that the right hand side can be cho-
sen origin preserving and s independent in standard devices like
dipoles, quadrupoles, and multipoles. The transfer map can
therefore be computed with the exponential operator exp(L~f

)

[7] and the full speed and power of the DA technique can be used
even with radiation effects.

V. THE IMPLEMENTATION
Routines were written which integrate the equation of motion

with the 8th order Runge Kutta integrator of the DA program
COSY INFINITY[8]. By integrating with DA techniques, one
obtains the phase space curve of the reference particle ~z0(s) si-
multaneously with the Taylor map ~M to arbitrary order such that
~z(s) = ~z0(s) + ~M [~z(0) � ~z0(0)] for particles starting in phase
space at ~z(0) close to the reference particle at ~z0(0).



Figure 1. No radiative energy loss: j@~z ~MT j = 1

The figures (1) and (2) show an electron’s path through a con-
stant magnetic field with and without synchrotron radiation. The
second order transfer maps are displayed in the adjacent tables.
The Jacobians of the linear transfer maps are 1 for the energy
conserving calculations and 0:023 for the calculations with radi-
ation. This test manifests what is known as phase space damping
in electron synchrotrons.

Our main purpose in using the constructed software will be the
analysis of nonlinear effects in helical structures in proton ma-
chines (Siberian snakes) and electron machines (wigglers). Also
the possibilities of influencing damping distributions with mul-
tipole wigglers should be analyzed.
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Figure 2. With radiative energy loss: j@~z ~MT j = 0:023

x a y b � � powers
-6.59 -.252 52.4 -.171 0 -.6 000000

1 0 0 0 0 0 100000
-3301 45.1 -2189 -65.7 -3704 -1 010000

0 0 1 0 0 0 001000
-65.5 .214 -8.24 -.316 0 0 000100

0 0 0 0 1 0 000010
3066 -41.9 2077 60.9 2963 1.0 000001
3E5 8774 -4E5 5646 -1E4 -.5 020000

2818 81.9 -4116 56.8 0 0 010100
-5E5 -2E4 8E5 -1E4 3E4 1.1 010001

-2058 28.4 -1409 -40.9 -2315 -.7 000200
-2596 -76.2 3833 -52.4 0 0 000101

2E5 7545 -4E5 4859 -1E4 -.7 000002

References

[1] M. Sands. The physics of electron storage rings, an introduc-
tion. Technical Report SLAC–121, UC–28, (ACC), Stan-
ford Linear Accelerator Center, 1970.

[2] A. A. Sokolov and I. M. Ternov. Radiation from Relativistic
Electrons. American Institutes of Physics, New York, 1986.

[3] F. Rohrlich. Classical Charged Particles. Addison–Wesley,
Mass., 1965.

[4] L. D. Landau and E. M. Lifschitz. Klassische Feldtheo-
rie. Lehrbuch der Theoretischen Physik. Akademie–Verlag,
Berlin, 1966.

[5] J. D. Jackson. Classical Electrodynamics. John Wiley &
Sons, New York, 1975.

[6] H. Rose. Hamiltonian magnetic optics. Nuclear Instruments
and Methods in Physics Research, A258:374–401, 1987.

[7] M. Berz. Arbitrary order description of arbitrary parti-
cle optical systems. Nuclear Instruments and Methods,
A298:426–440, 1990.

[8] M. Berz. COSY INFINITY version 6 reference manual.
Technical Report MSUCL-869, National Superconducting



Cyclotron Laboratory, MSU, East Lansing, MI, 1992.


