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Abstract

Synchrotron radiation has been traditionally treated as an effect
which only depends on the linear beam dynamics. Electrons
in advanced accelerators and storage rings, however, can lose
severa percent of their energy in one turn, especially when the
ring incorporates synchrotron radiation sources or free electron
lasers. In these machines nonlinear effects can become impor-
tant, not only because of the high variation of the particle's en-
ergy around the ring, but also because of the necessity to have
very good beam quality in wigglers, undulators, and free elec-
tron lasers. Since these instruments can have helical structure,
a general reference frame with torsion is used and the Lorenz—
Dirac radiation reaction of the charged particle istaken into ac-
count. Wewill utilizethe Differential Algebratechniqueto com-
pute nonlinear transfer maps of general optical elements. Ap-
plicationsinclude radiation damping in multipoles, its effect on
closed orbit distortionin a storagering, and nonlinear tune shifts
duetovariousradiating devices. The softwareprovided will aso
be useful in simulating Siberian snakes.

I. INTRODUCTION

If the energy of acharged particleis conserved, the equations
of motion are Hamiltonian. The Hamiltonian structure of these
equationsimpliesthat their flowsaresymplectic. Thesymplectic
symmetry poses several constraints on the motion. Liouville's
theorem isan especially famous consequence of thisproperty. If
energy is lost during the motion, as in the case of eectronsin
a storage ring, the equations of motion are not Hamiltonian and
knowledge about sympl ectic flows cannot be applied. If onesets
out to describe high energy electron motion, it is therefore best
not to start with a Hamiltonian but directly with the equation of
motion. It is, however, not sufficient to solve the Hamiltonian
equations of motion without radiation and to simulate an effec-
tive loss of energy after each dipole, since the phase space de-
pendence of the lost energy is essential even in the linear theory
[1]. The genera equation of motion for charged particle optics,
especially when used to compute highly energetic el ectron mo-
tion, shouldthereforeincludetheenergy lossduetoradiationand
the reaction of the particleto is own electromagnetic field.

The behavior of a charged particle in the superposition of an
external field and itsown retarded field cannot be described with-
out problems|[2], [3], [4], the classical limit isdiscussed in [5].

After an appropriate average in the Lorentz—Dirac eguation,
we reformul ate the equationsin such away that they have asuit-
ableform for the conventional description of particleoptics. We
will keep the argumentation completely general and allow refer-
ence curveswithtorsion. Thusweobtaintheequationsof motion
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with path length along some space curve as the independent pa-
rameter. These are the genera equations of motion for describ-
ing charged particle optics.

To solve these eguations of motion, we implemented the
method of Taylor maps, which are computed with the Differen-
tial Algebraic (DA) technique. In standard devices like dipoles,
guadrupoles, and higher order multipol esthe equation of motion
can beintegrated with an exponential operator, such that thefull
power and speed of the DA method is obtained even with radia
tion effects.

Il. THE LORENTZ-DIRAC EQUATION

To analyzetheinfluence of radiation effects on particlemotion
consistently, we haveto consider thefield produced by amoving
charged particle. Then wecan computethe particlemotionunder
theinfluence of itsown field and an external field. To derivethis
equation, one can proceed in the following steps:

1. Derivethe small velocity limit.

2. Write the genera and covariant form of the equations of

motion which satisfies the low velocity limit.

3. Reformulatethedifferential equationintoan integral equa-

tion.

4. Approximate the integral equation.

5. Transform the covariant equation into a specific inertial

frame.

These steps can be extracted from the references mentioned.
Asaresult one obtains the equation of motion
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we require an equation of motion of the form 7 = f(Z, s) for
phase space variables 7. It indeed turns out that such aformula-

tionis possible. After introduction of
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We can expand to the first power of §|F| and obtain

%p F— o[t x F)2+ 712 (#F)?). (5)

This expansion is valid even for very high energy. For an
electric field of 107%, this electron energy would be around
2700GeV. For a magnetic field of 10T, this energy is about

150GeV.

1. THE CURVILINEAR COORDINATE
SYSTEM

We want to introduce a coordinate system with which particle
motion close to some reference curve ﬁ(s) parameterized by its
path length s can be described well. For that purpose one defines
s dependent unit vectorsé;, and &, insuch away that closetothis
curve space points i can be expressed as

7= R(s) 4+ zex(s) + yey (s) (6)

andtheunit vectorse, = J; R, &, and &, buildaright handed

coordinateframe. The reference curve's curvature « can have

and y components x,, and . There are three reasonabl e possi-
bilitieswith different formsfor their s derivatives.

1. Thehorizonta systeminwhich onechoosese;. aways per-

pendicular to one fixed space direction ¢ :
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2. The Frenet coordinate system in which one choosesthe ¢,
direction always paralle to the curvature vector, which ro-
tates around the reference curve with thetorsion 7:

d
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3. The curvilinear system in which the effect of thetorsionis
compensated by areversed rotation [6]. In thiscase the ori-
entation of the coordinate system at s depends on the his-
tory of the torsion between 0 and s and istherefore not de-
fined locally. Thisdisadvantage can be compensated by the
simplicity of
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ds

V. THE LORENTZ-DIRAC EQUATION IN
CURVILINEAR COORDINATES

In this coordinate system we therefore have

h = 14 xke + yry , (20)
d
EF = & +yey + hés,
]7 = pxgx +py5y +ps€s )
d - -
EP = (P — pske)le + (P; — Psky)éy

+ (p; + Prke +pyﬁy)€s .

We use standard particle optical phase space coordinates
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where subscripts 0 refer to areference particle, whichin gen-
eral does not have to follow the reference curve R(s) however.
By defining

£ = Fpa+ Eyb+ B2 (12)
Po

B = Bya+ Byb+ B,2* |
Po

the genera equations of motion which are obtained with
ds/dt =v/h - ps/p Ssmplify to
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where the damping terms are
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It is worth mentioning that the right hand side can be cho-
sen origin preserving and s independent in standard devices like
dipoles, quadrupoles, and multipoles. The transfer map can
therefore be computed with the exponential operator exp(L f‘)
[7] and thefull speed and power of the DA techniquecan be used
even with radiation effects.

V. THE IMPLEMENTATION

Routineswere written which integrate the equation of motion
with the 8* order Runge Kutta integrator of the DA program
COSY INFINITY[8]. By integrating with DA techniques, one
obtains the phase space curve of the reference particle z (s) si-
multaneoudy with the Taylor map Mto arbitrary order such that
Z(s) = Zo(s) + M[Z(0) — %(0)] for particles starting in phase
space at Z(0) close to the reference particle at 2 (0).
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Figurel. No radiative energy loss: |85]\ZT| =1
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Thefigures (1) and (2) show an electron’s path through a con-
stant magnetic field with and without synchrotron radiation. The
second order transfer maps are displayed in the adjacent tables.
The Jacobians of the linear transfer maps are 1 for the energy
conserving calculationsand 0.023 for the cal cul ationswith radi-
ation. Thistest manifestswhat isknown as phase space damping
in electron synchrotrons.

Our main purposein using the constructed softwarewill bethe
analysis of nonlinear effects in helical structuresin proton ma
chines (Siberian snakes) and el ectron machines (wigglers). Also
the possibilities of influencing damping distributionswith mul-
tipole wigglers should be analyzed.

X a y b T | 4 | powers
379 | -253 | 527 | .758 0| O | 000000
1 0 0 0 0| O | 100000
-893 | -56.4 | 2876 | -17.8 | -3704 | 0 | 010000
0 0 1 0 0| O | 001000
-65.9 | -.948 | 474 | -317 0| O | 000100
0 0 0 0 1| 0 | 000010
1176 | 701 | -3512 | 234 | 2963 | 1 | 000001
-1E5 403 | -2E4 | -2176 | -2E4 | 0 | 020000
-3512 | 234 | -1176 | -70.1 0| O | 010100
3E6 | -1183 | .6E5 | 5382 | .3E5 | 0 | 010001
-587 | -35.1 | 1756 | -11.7 | -2315 | O | 000200
4390 | -29.3 | 1469 | 87.7 0| O | 000101
-2E5 829 | -4E4 | -3333 | -1E4 | O | 000002
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Figure2. With radiativeenergy loss: [0-M7| = 0.023

X a y b T d | powers
-6.59 | -252 | 524 | -171 0| -.6 | 000000
1 0 0 0 0| O | 100000
-3301 | 45.1 | -2189 | -65.7 | -3704 | -1 | 010000
0 0 1 0 0| O | 001000
-65.5 | .214 | -824 | -.316 0| O | 000100
0 0 0 0 1 0 | 000010
3066 | -41.9 | 2077 | 60.9 | 2963 | 1.0 | 000001
3E5 | 8774 | -4E5 | 5646 | -1E4 | -5 | 020000
2818 | 819 | -4116 | 56.8 0| O | 010100
-5E5 | -2E4 | 8E5| -1E4 | 3E4 | 1.1 | 010001
-2058 | 28.4 | -1409 | -40.9 | -2315 | -.7 | 000200
-2596 | -76.2 | 3833 | -524 0| O | 000101
2E5 | 7545 | -4E5 | 4859 | -1E4 | -.7 | 000002
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