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Abstract Il. Poincae section at the synchrotron period

Beginning with a tracking code for the LHC, we construct the Long-term behavior of transverse coordinates is strongly af-
canonical generator of the full-turn map in polar coordinaté§cteéd by momentum oscillations, but the synchrotron motion
For very fast mapping we adopt a model in which the momeitself remains roughly harmonic. For a first view of the full six-
tum is modulated sinusoidally with a period of 130 turns (vel§imensional system, it is then reasonable to modulate the mo-
close to the synchrotron period). We achieve symplectic mdpentum externally, and ignore the coordinate conjugate to mo-
ping of 107 turns in 3.6 hours on a workstation. Quasi-invariadféntum (time-of-flight). Experience with tracking shows that
tori are constructed on the Poineaséction corresponding tosuch a model gives results rather similar, if not identical, to those
multiples of the synchrotron period. The possible use of qua8f-the full six-dimensional treatment. The synchrotron period of
invariants in deriving long-term bounds on the motion is dighe LHC injection lattice is nearly 130 turns. We suppose itto be

cussed. exactly 130, and take the momentum deviation atrttle turn
to be
. - . 2mm _
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In[1], we showed how to construct the mixed-variable genefne momentum change is localized at a single r.f. cavity. For
ating function for the fuI_I-turn map, using only smgle-turn datghe rest of the ring we have a 4-dimensional map for fixed
from a symplectic tracking code. The generator is represenigdynich is represented in terms of coordinates centered at its
as a Fourier series in angle variables, the Fourier Coeﬁ'c'e@t—sdependent fixed point [1]. To save computing time in map
being B-spline functions of action variables. The symplectits ation, we store the coefficients that determine the 4-d gener-
map induced by this generator gives a good representatlorhgﬁg function. for each of the 130 valueséof
the dynamics defined by the tracking codedording tphysi-  he Hamiltonian is periodic in with period 13@, whereC
cal criteria to be stated presently), even with moderate nUMbgI$he circumference of the reference orbit. The surfaee 0
of Fourier modes_and splir_1e knot_s. There are two special _fea-(mod 130C) is then a Poincarsection on which there exist
tures ‘_3f the B-spline—Fourier basis that promote fast map itgfo_gimensional invariant surfaces and resonances that can be
ations: (i) the B-spline basis functions have “limited supportgy,gied in the usual way. In comparison to the situation for the
which is to say that only a few of the functions are non-zeiQ,qje-turn map at fixed, we find many more low-order reso-
at a particular point, and (i) among all Fourier amplitudes Withances, This is not surprising, since even without modulation
mode n_ur_nbers less than some cutoff, a great many are foungtq ine 130-th power of the map will have many more reso-
be negligible. nances than the first power. The resonance condition for the

A method to set long-term bounds on nonlinear motion wag-th power, N - » = P, has more solutions than that for the
proposed in [2]. The idea is to make a canonical transformatigfst power,m - v = p, whereP, p and the components of
to new action-angle variablgd, ¥), such that the actiod is are any integers.
nearly invariant, and then examine the residual variatiod .of
In [2] the method was illustrated only in a simple example of [Il. Construction and Validation of Full-turn Map

transverse motion. for the LHC
In this paper we construct maps for a realistic injection lat-

tice of the LHC. The maps are sufficiently fast so that one C?nln contrast to the appr_oach based on Taylor series, we do not
. . : 7 ook for a map to be valid over all of the relevant phase space.
economically follow single orbits fot0* turns, and also con-

2 : . Rather, we concentrate our approximative power in a small re-
struct quasi-invariant surfaces with aomt of synchrotron os- _. . : e
ion of action space, over which the map has relatiVitle

cillations. We make the first steps toward derivation of Ion%— e . .
iation in action. We can then get high accuracy from a small

_term b_ound_s, but find that the method of [.2] must be elaboratgg of spline basis functions, and that allows fast iteration of the
if one is to find good bounds at large amplitudes.

map. For a global study of stability we string together several

overlapping regions, and make a map for each region.
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splines are cubic polynomials locally. The construction of th {5 v v O a S O S e S oo s
. . . - \ SO NN ~
generator requires 264600 turns of tracking, with 68ms per tt [> MWy \‘\\‘\\ SO A N A T S
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be iterated in 1.2ms on the same machine, gitiifgurnsin 3.6 Oo 2 4 5
hours. The map agrees with the tracking code to about 1 part in
10* at one turn. The accuracy of agreement can be increasedmggure. 1. ®, vs. ®; on a 59th order resonance of the map,

sentially at will by increasing the number of Fourier modes ang,,, + 26, = p, for 10000 synchrotron periods. Initial condi-
spline points, or the order of the splines. The time for iteratiqn)ns;[l(o)' I5(0) = (1.09983,1.1) - 10~ 7 m.

does not increase with the number of spline points if the spline
order is fixed (thanks to the limited support of B-splines), but
the construction time is proportional to that number. one part inl0* under the tracking code.

Rather than trying for higher accuracy, we consider it most These and other tests convince us that the Hamiltonian system
interesting to work with a map of modest accuracy (hence shtgpresented by symplectic maps of modest one-turn accuracy
iteration time) and try to show that it gives essentially the sanfk part in10*) represent a physical system very similar to that
physical picture as the underlying tracking code. We do that b§ the underlying tracking code, at least at amplitudes not too
comparing resonances and quasi-invariant surfaces of the ragse to the dynamic aperture. At very large amplitudes it is
and the tracking code. An easy way to find resonances (on 00t easy to validate the map by the above arguments, since one
Poincag surface at the synchrotron period) is to look for offinds large-scale chaotic behavior rather than clean resonances
bits confined to narrow bands in the plane of angles®,; and quasi-invariants.
see [2]. In the case of relatively broad resonances, of which
there are great many at moderate amplitudes, we always find V. A String of Large-amplitude Maps and
that an initial condition giving a resonance of the map also gives Long-term Mapping

the same one in tracking. In trying the same test for narrow,

high-order resonances, we found a 62-nd order resonance g ene over-nightrun, using a small fraction of available CPU
the map at(/; (0), 12(0))' — (1.1, 1.1). This did not appear in time on a “farm” of workstations at SLAC, we produced a string

tracking from the same initial condition, but another 59-th ordglf five fmapj In pa(;“a”lY ovlfrlapplng reﬁtangular reg'oﬂs- Num- |
resonance did appear. Readjusting slightly the initial conditi rs of modes and spline knots were the same as In the example

of the map trajectory, we found the 59-th order in the map gbove. This gives a continuous strip of allowable initial condi-

(1,(0), I(0)) = (1.09983,1.1). This orbit of the map is plot- “O”r? (wghdn = %2 = 0), betT";’wee” tWOL‘”e(f g parallel

ted for 10000 synchrotron periods in Fig. 1. The correspondie%t e short-term aperture. e outer border of the strip Is at
I

orbit of tracking for 5000 synchrotron periods agrees very wi % of the gperture. The Ol_ﬂer Corners_of_the rectangles go be-
c)éond the strip, and allow orbits that go within at least 85% of the

on visual inspection; (quantitative comparison is difficult, sin ) o
the points fill the “curves” differently in the two cases). aperture. At the time of writing we have done a few runs@f
turns using these maps. Fig. 2 shows a plat cdt every eighth

To compare guasi-invarianttori of the map and tracking, agas'g/nchrotron period in such a run. The vertical frame size of the

on the Poinca surface, we constructed a torus by the methg faph indicates the domain of the splinegjn The domain of

of [2] in which a nonresonant orbit is fitted to a Fourier series . . .

. ) he maps does not include the coordinate akis- 0, I, = 0.
angle variables. Taking 20 modes for each angle, a few quasi- . o : .
. : : : e map construction fails in a small neighborhoodach axis,
invariant tori of the map were computed. It typically took about . . !

: . since the polar coordinate system becomes inappropriate.

7000 synchrotron periods of mapping to compute atorus, requir-
ing about 20 minutes on the Model 590. We check invariance
under the map or under tracking by starting orbits at many ran-
domly chosen points on the torus, and see how close the orbiHere we are concerned solely with the dynamics defined by
is to the torus after one synchrotron period. With 50 randomilge map. For a first attempt at long-term bounds we work at
chosen points, a typical surface was invariant to one partin smaller amplitudes, in a region with4 < I (0), I(0) < 0.6

under the map from which it was constructed, and invariant ¢m units of 10~"m). Following the method of [2], we construct

V. A First Try at Long-term Bounds
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Figure. 2. I; vs. number of synchrotron periods, fifi” turns. Figure. 3. Plotofi-dJ vs.[m-® (mod 27)]/2x, wherern
Initial conditions:1; (0), 7(0) = (1.87,0.937) - 107 m. is the unit vector in the direction afz = (6, 1), andd.J is the
deviation of.J from a fixed “average action,J,. Each of the

_ ) o ] 9 orbits plotted is started at the same valugot m-J; (0) —
a set of 9 tori on the PoinoarSection, for points close to 8, J,(0). The action unitis0=7 m.

3 x 3 rectangular grid in/;(0), I>(0). These tori have twenty

Fourier modes in each variable, and are invarianbtmid1 part

in 10°. We next interpolate the tori in actions, so as to defineessary to refine the definition of these quantities, so that they are
smooth canonical transformation to new action-angle variabfegictions of all the canonical variablds ®.

J,¥. Although.J is fairly constant on and near the original

tori, it remains to be seen how much it varies in the region of VI. Acknowledgment

interpolation. o o _ This work was made possible by the kind help of Frank
Let Q denote the region in whicli is defined. Suppose Schmidt, who provided lattice information for the LHC and as-

thatdJ is an upper bound for the changelif| duringm syn-  sistance in verifying our tracking code.
chrotron periods, for any orbit beginningéh Let €2, be a sub-

region of(2, and letA.J be the minimum distance frofa, to References
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We takerm = 1000 and try1000 randomly chosen initial con- '
ditions in{2 to estimat& /. We find thav J is about 0.01, which
is much larger than the variation dffor orbits starting on the
original tori. If we takef2, to be a small box in the middle of
2, thenAJ is about 0.1, and we can predict stability only for
N = 1.3 -10° turns, a disappointingly small number.
The reason for the large variation dfis the presence of a
fairly broad resonance inside. A sufficiently isolated reso-
nance in moden = (my,m») can be identified by plotting the
change ofn - J againstm - ¥ at constanfy = myJ; — moJy
[2]. As is shown for a(6, 1) resonance in Fig. 3, these vari-
ables perform a pendulum-like motion. Note that this motion
would be hard to see without first transformingJo®. The
resonance could be quite stable, but still lead to large oscilla-
tionsin.J. In order to make our argument for long-term bounds,
it will be necessary to find quasi-invariants of resonant orbits.
Preliminary work by Armando Antibh showed that a simple
pendulum-type Hamiltonia# (m - J,m - ®, K') could be fit-
ted to orbit data so as to provide at least a rough quasi-invariant;
K is a second quasi-invariant. We hope to tisand K’ in place
of J1, Jo in our argument for long-term bounds. It may be nec-



