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Abstract

Beginning with a tracking code for the LHC, we construct the
canonical generator of the full-turn map in polar coordinates.
For very fast mapping we adopt a model in which the momen-
tum is modulated sinusoidally with a period of 130 turns (very
close to the synchrotron period). We achieve symplectic map-
ping of107 turns in 3.6 hours on a workstation. Quasi-invariant
tori are constructed on the Poincar´e section corresponding to
multiples of the synchrotron period. The possible use of quasi-
invariants in deriving long-term bounds on the motion is dis-
cussed.

I. Introduction

In [1], we showed how to construct the mixed-variable gener-
ating function for the full-turn map, using only single-turn data
from a symplectic tracking code. The generator is represented
as a Fourier series in angle variables, the Fourier coefficients
being B-spline functions of action variables. The symplectic
map induced by this generator gives a good representation of
the dynamics defined by the tracking code (according tophysi-
cal criteria to be stated presently), even with moderate numbers
of Fourier modes and spline knots. There are two special fea-
tures of the B-spline–Fourier basis that promote fast map iter-
ations: (i) the B-spline basis functions have “limited support,”
which is to say that only a few of the functions are non-zero
at a particular point, and (ii) among all Fourier amplitudes with
mode numbers less than some cutoff, a great many are found to
be negligible.

A method to set long-term bounds on nonlinear motion was
proposed in [2]. The idea is to make a canonical transformation
to new action-angle variables(J ;	), such that the actionJ is
nearly invariant, and then examine the residual variation ofJ .
In [2] the method was illustrated only in a simple example of
transverse motion.

In this paper we construct maps for a realistic injection lat-
tice of the LHC. The maps are sufficiently fast so that one can
economically follow single orbits for107 turns, and also con-
struct quasi-invariant surfaces with account of synchrotron os-
cillations. We make the first steps toward derivation of long-
term bounds, but find that the method of [2] must be elaborated
if one is to find good bounds at large amplitudes.
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II. Poincaré section at the synchrotron period
Long-term behavior of transverse coordinates is strongly af-

fected by momentum oscillations, but the synchrotron motion
itself remains roughly harmonic. For a first view of the full six-
dimensional system, it is then reasonable to modulate the mo-
mentum externally, and ignore the coordinate conjugate to mo-
mentum (time-of-flight). Experience with tracking shows that
such a model gives results rather similar, if not identical, to those
of the full six-dimensional treatment. The synchrotron period of
the LHC injection lattice is nearly 130 turns. We suppose it to be
exactly 130, and take the momentum deviation at themth turn
to be

� =
p � p0

p0
= �0 sin

2�m

130
; �0 = 5 � 10�4: (1)

The momentum change is localized at a single r.f. cavity. For
the rest of the ring we have a 4-dimensional map for fixed
�, which is represented in terms of coordinates centered at its
��dependent fixed point [1]. To save computing time in map
iteration, we store the coefficients that determine the 4-d gener-
ating function, for each of the 130 values of�.

The Hamiltonian is periodic ins with period 130C, whereC
is the circumference of the reference orbit. The surfaces = 0
(mod 130C) is then a Poincar´e section on which there exist

two-dimensional invariant surfaces and resonances that can be
studied in the usual way. In comparison to the situation for the
single-turn map at fixed�, we find many more low-order reso-
nances. This is not surprising, since even without modulation
of � the 130-th power of the map will have many more reso-
nances than the first power. The resonance condition for the
N -th power,Nm � � = P , has more solutions than that for the
first power,m � � = p, whereP , p and the components ofm
are any integers.

III. Construction and Validation of Full-turn Map
for the LHC

In contrast to the approach based on Taylor series, we do not
look for a map to be valid over all of the relevant phase space.
Rather, we concentrate our approximative power in a small re-
gion of action space, over which the map has relativelylittle
variation in action. We can then get high accuracy from a small
set of spline basis functions, and that allows fast iteration of the
map. For a global study of stability we string together several
overlapping regions, and make a map for each region.

To set the scale, we first run the tracking code to determine
the short term (2000 turn) dynamic aperture. In the plane of
our action variables(I1; I2), described in units of10�7m, this



aperture roughly follows the straight line from(6; 0) to (0; 9).
To illustrate map construction, we discuss a map that is valid
for initial actionsI1(0); I2(0) (with initial angles being zero) in
the regionR such that1 � I1(0); I2(0) � 1:5. This region is
located at about one half of the short-term aperture in the plane
of displacementsx1; x2. The generator is determined in a larger
regionR1, to allow for smear of orbits (as determined by short-
term tracking) and an extra “apron” to account for possible long-
term drift. The map iteration is programmed to stop if the orbit
leavesR1.

The map in question has 10 Fourier modes for each angle,
10 spline interpolation points for each action, and 6 for�. The
splines are cubic polynomials locally. The construction of the
generator requires 264600 turns of tracking, with 68ms per turn
(thus 5 hours) on an IBM RS6000 Model 590 workstation. The
resulting implicit map (made explicit by Newton's method) can
be iterated in 1.2ms on the same machine, giving107 turns in 3.6
hours. The map agrees with the tracking code to about 1 part in
104 at one turn. The accuracy of agreement can be increased es-
sentially at will by increasing the number of Fourier modes and
spline points, or the order of the splines. The time for iteration
does not increase with the number of spline points if the spline
order is fixed (thanks to the limited support of B-splines), but
the construction time is proportional to that number.

Rather than trying for higher accuracy, we consider it most
interesting to work with a map of modest accuracy (hence short
iteration time) and try to show that it gives essentially the same
physical picture as the underlying tracking code. We do that by
comparing resonances and quasi-invariant surfaces of the map
and the tracking code. An easy way to find resonances (on our
Poincaré surface at the synchrotron period) is to look for or-
bits confined to narrow bands in the plane of angles�1;�2;
see [2]. In the case of relatively broad resonances, of which
there are great many at moderate amplitudes, we always find
that an initial condition giving a resonance of the map also gives
the same one in tracking. In trying the same test for narrow,
high-order resonances, we found a 62-nd order resonance of
the map at(I1(0); I2(0)) = (1:1; 1:1). This did not appear in
tracking from the same initial condition, but another 59-th order
resonance did appear. Readjusting slightly the initial condition
of the map trajectory, we found the 59-th order in the map, at
(I1(0); I2(0)) = (1:09983; 1:1). This orbit of the map is plot-
ted for 10000 synchrotron periods in Fig. 1. The corresponding
orbit of tracking for 5000 synchrotron periods agrees very well
on visual inspection; (quantitative comparison is difficult, since
the points fill the “curves” differently in the two cases).

To compare quasi-invariant tori of the map and tracking, again
on the Poincar´e surface, we constructed a torus by the method
of [2] in which a nonresonant orbit is fitted to a Fourier series in
angle variables. Taking 20 modes for each angle, a few quasi-
invariant tori of the map were computed. It typically took about
7000 synchrotron periods of mapping to compute a torus, requir-
ing about 20 minutes on the Model 590. We check invariance
under the map or under tracking by starting orbits at many ran-
domly chosen points on the torus, and see how close the orbit
is to the torus after one synchrotron period. With 50 randomly
chosen points, a typical surface was invariant to one part in105

under the map from which it was constructed, and invariant to

Figure. 1. �2 vs. �1 on a 59th order resonance of the map,
33�1 � 26�2 = p, for 10000 synchrotron periods. Initial condi-
tions:I1(0), I2(0) = (1:09983; 1:1) � 10�7 m.

one part in104 under the tracking code.
These and other tests convince us that the Hamiltonian system

represented by symplectic maps of modest one-turn accuracy
(1 part in104) represent a physical system very similar to that
of the underlying tracking code, at least at amplitudes not too
close to the dynamic aperture. At very large amplitudes it is
not easy to validate the map by the above arguments, since one
finds large-scale chaotic behavior rather than clean resonances
and quasi-invariants.

IV. A String of Large-amplitude Maps and
Long-term Mapping

In one over-night run, using a small fraction of available CPU
time on a “farm” of workstations at SLAC, we produced a string
of five maps in partially overlapping rectangular regions. Num-
bers of modes and spline knots were the same as in the example
above. This gives a continuous strip of allowable initial condi-
tions (with�1 = �2 = 0), between two lines running parallel
to the short-term aperture. The outer border of the strip is at
70% of the aperture. The outer corners of the rectangles go be-
yond the strip, and allow orbits that go within at least 85% of the
aperture. At the time of writing we have done a few runs of107

turns using these maps. Fig. 2 shows a plot ofI1 at every eighth
synchrotron period in such a run. The vertical frame size of the
graph indicates the domain of the splines inI1. The domain of
the maps does not include the coordinate axis,I1 = 0, I2 = 0.
The map construction fails in a small neighborhood ofeach axis,
since the polar coordinate system becomes inappropriate.

V. A First Try at Long-term Bounds

Here we are concerned solely with the dynamics defined by
the map. For a first attempt at long-term bounds we work at
smaller amplitudes, in a region with0:4 < I1(0); I2(0) < 0:6
(in units of10�7m). Following the method of [2], we construct



Figure. 2. I1 vs. number of synchrotron periods, for107 turns.
Initial conditions:I1(0), I2(0) = (1:87; 0:937) � 10�7 m.

a set of 9 tori on the Poincar´e section, for points close to a
3 � 3 rectangular grid inI1(0); I2(0). These tori have twenty
Fourier modes in each variable, and are invariant to about 1 part
in 105. We next interpolate the tori in actions, so as to define a
smooth canonical transformation to new action-angle variables
J ;	. AlthoughJ is fairly constant on and near the original
tori, it remains to be seen how much it varies in the region of
interpolation.

Let 
 denote the region in whichJ is defined. Suppose
that�J is an upper bound for the change injJij duringm syn-
chrotron periods, for any orbit beginning in
. Let
o be a sub-
region of
, and let�J be the minimum distance from
o to
the boundary of
. Then an orbit beginning in
o cannot leave

 in fewer thannm synchrotron periods, wheren�J = �J .
Then we have stability (in the sense of being confined to
) for
N = 130m�J=�J turns.

We takem = 1000 and try1000 randomly chosen initial con-
ditions in
 to estimate�J . We find that�J is about 0.01, which
is much larger than the variation ofJ for orbits starting on the
original tori. If we take
o to be a small box in the middle of

, then�J is about 0.1, and we can predict stability only for
N = 1:3 � 106 turns, a disappointingly small number.

The reason for the large variation ofJ is the presence of a
fairly broad resonance inside
. A sufficiently isolated reso-
nance in modem = (m1;m2) can be identified by plotting the
change ofm � J againstm �	 at constantK = m1J2 �m2J1
[2]. As is shown for a(6; 1) resonance in Fig. 3, these vari-
ables perform a pendulum-like motion. Note that this motion
would be hard to see without first transforming toJ ;	. The
resonance could be quite stable, but still lead to large oscilla-
tions inJ . In order to make our argument for long-term bounds,
it will be necessary to find quasi-invariants of resonant orbits.
Preliminary work by Armando Antill´on showed that a simple
pendulum-type HamiltonianH(m � J ;m �	;K) could be fit-
ted to orbit data so as to provide at least a rough quasi-invariant;
K is a second quasi-invariant. We hope to useH andK in place
of J1; J2 in our argument for long-term bounds. It may be nec-

Figure. 3. Plot ofm̂ �dJ vs. [m�	 (mod 2�)]=2�, wherem̂
is the unit vector in the direction ofm = (6; 1), anddJ is the
deviation ofJ from a fixed “average action,”J0. Each of the
9 orbits plotted is started at the same value ofK = m2J1(0) �
m1J2(0). The action unit is10�7 m.

essary to refine the definition of these quantities, so that they are
functions of all the canonical variablesJ ;	.
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