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Abstract

The motion of a particle in 6-dimensional phase space in the
presence of linear coupling can be written as the sum of 3 normal
modes. A cubic equation is found for the tune of the normal
modes, which allows the normal mode tunes to be computed
from the 6× 6 one turn transfer matrix. This result is similar to
the quadratic equation found for the normal mode tunes for the
motion of a particle in 4-dimensional phase space. These results
are useful in tracking programs where the one turn transfer matrix
can be computed by multiplying the transfer matrices of each
element of the lattice. The tunes of the 3 normal modes for motion
in 6-dimensional phase space can then be found by solving the
cubic equation. Explicit solutions of the cubic equation for the
tune are given in terms of the elements of the 6× 6 one turn
transfer matrix.

I. INTRODUCTION

The motion of a particle in 6-dimensional phase space in the
presence of linear coupling can be written as the sum of 3 normal
mode. A cubic equation is found for the tune of the normal
modes, which allows the normal mode tune to be computed from
the 6× 6 one turn transfer matrix.

This result is similar to the quadratic equation [1] found for the
normal mode tune for the motion of a particle in 4-dimensional
phase space. These results are useful in tracking programs where
the one turn transfer matrix can be computed by multiplying the
transfer matrices of each element of the lattice. The tune of the 3
normal modes for motion in 6-dimensional phase space can then
be found by solving the cubic equation. Explicit solutions of the
cubic equation for the tune are given in terms of the elements of
the 6× 6 one turn transfer matrix.

II. A CUBIC EQUATION FOR NORMAL MODE
TUNES

The particle coordinates are assumed to bex, px, y, py, z, pz.
Then the linear motion of the particle about some central orbit
can be described by a 6× 6 transfer matrix T(s, s0).

x(s) = T(s, s0)x(s0)

x =


x
px

y
py

z
pz

 (1)

Note that the symbolx is used to denote the column vectorx and
also the first element of this column vector. The meaning ofx
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should be clear from the context. This notation is used in several
places in this paper.

It is assumed that the equations of motions can be derived from
a hamiltonian, and the matrix T is symplectic:

TT = I

T =
∼
S
∼
T S (2)

∼
T is the transpose of T.

I is the 6× 6 identity matrix, andScan be written in terms of
2× 2 matrices as

S=
 S 0 0

0 S 0
0 0 S

 (3)

The 2× 2 matrix, also calledS, is given by

S=
(

0 1
−1 0

)
(4)

It is convenient to also write T in terms of 2× 2 matrices

T =
 T11 T12 T13

T21 T22 T23

T31 T32 T33

 (5)

One may note that the 2× 2 matrices ofT are(T)i j = T j i . The
eigenfunctions of the one turn transfer matrix T(s+ L , s), where
L is the period of the forces acting on the particle, obey

T(s+ L , s)x = λx

Because T is symplectic then ifλ is an eigenvalue, 1/λ is also
an eigenvalue [1,2] and the 6 eigenvalue can be arranged in 3
pairs ofλ and 1/λ. For stable motion,|λ| = 1 andλ can be
written as

λ = exp(iµ)

µ = 2πν, (6)

where it is assumed that the period is one turn.
To find the tunes of the normal modes, one has to find the

eigenvalues of T,λ, which are given by|T− λI | = 0, where|T|
indicates the determinant of T. It is more convenient to find the
eigenvalues of the matrix C defined by

C= 1

2
(T+ T) (7)

The eigenvalues of C,3, are

3 = 1

2
(λ+ 1/λ),

3 = cosµ (8)



         
and the3 are determined by

|C−3I | = 0 (9)

It is convenient to write C in terms of 2× 2 matrices. Note
that the 2× 2 elements of C are

Ci j = (Ti j + T j i )/2 (10)

and thus

Ci i = 1

2
Tr (Ti i )I

Ci j = C j i (11)

We can then write C as

C=
 t1I C12 C13

C21 t2I C23

C31 C32 t3I

 (12)

ti = 1

2
Tr (Ti i )

To evaluate|C− 3I |, C−3I will be multiplied from the left
by a sequence of matrices, each with determinant 1, to produce
a matrix which is upper triangular; that is, the elements of this
matrix below the diagonal are all zero. This triangular matrix
has the same determinant as C−3I , and its determinant can be
found by multiplying all the diagonal elements of this matrix.

First, multiply C−3I from the left by the matrix 1 0 0
−C21/t1 1 0

0 0 1

 (13)

t1 = t1−3
This matrix is designed to eliminate C21 and the multiplication
gives the result t1I C12 C13

0 (t2− |C12|/t1)I C23− C21C13/t1

C31 C32 t3

 (14)

The result C12C12 = |C12| has been used. Note that C21 = C12.
Now multiply the matrix Eq. (14) by the matrix 1 0 0

0 1 0
−C31/t1 0 1

 (15)

which replaces the third row in Eq. (14) by the third row plus
−C31/t1 times the first row giving t1I C12 C13

0 (t2− |C12|/t1)I C23− C21C13/t1

0 C32− C31C12/t1 (t3− |C13|/t1)I

 (16)

One more matrix multiplication is required to reduce C−3I to
an upper triangular matrix. Multiply matrix Eq. (16) by the
matrix 1 0 0

0 1 0
0 −(C32− C31C12/t1)/(t2− |C12|t1) 0

 (17)

This gives t1I C12 C13

0 (t2− |C12|/t1)I C23− C21C13/t1

0 0
∼
t 3 I

 (18)

∼
t 3=

[
t3− |C13|/t1− |C23− C21C13/t1|/(t2− |C12|/t1)

]
The matrix Eq. (18) is a triangular matrix with zero elements
below the diagonal and its determinant, and thus|C−3I |, can
be computed by multiplying the diagonal elements which gives

|C−3I |1/2 = t1(t2− |C12|/t1)
[
t3− |C13|/t1

−|C23− C21C13/t1|/(t2− |C12|/t1)
]

|C−3I |1/2 = t1
[
(t2− |C12|/t1)(t3− |C13|/t1)

−|C23− C21C13/t1|
]

(19)

|C−3I |1/2 = (1/t1)
[
(t1t2− |C12|)(t1t3− |C13|)

−|C23t1− C21C13|
]

To simplify Eq. (19), note the following result

|C23t1− C21C13|I = (C23t1− C21C13)(C23t1− C13C21)

=
[
|C23|t2

1− Tr (C23C13C21)t1+ |C21||C13|
]

I (20)

which gives

|C−3I |1/2 = t1t2t3−t2|C13|−t3|C12|−t1|C23|+Tr (C23C31C12)

(21)
Finally, the normal modes tunes, which are given by|C−3I | = 0
are determined by the cubic equation

(3−t1)(3−t2)(3−t3)−(3−t1)|C23|−(3−t2)|C31|−(3−t3)|C12|

−Tr (C12C23C31) = 0

3 = cosµ, µ = 2πν

t1 = 1

2
Tr (T11), t2 = 1

2
Tr (t22), t3 = 1

2
Tr (T33) (22)

C= 1

2
(T+ T)

Ci j = 1

2
(Ti j + T j i )

The Ti j are the 2×2 elements of T and Ci j are the 2×2 elements
of C.

Equation (22) is a cubic equation, and the 3 roots of this equa-
tion 3i = cosµi , i = 1, 3 will give the 3 tunes of the normal
modes,νi = µi /2π . If µi is real the mode is stable; ifµ has an
imaginary part then the mode may be unstable.

To get a result for 4-dimensional coupled motion, we put C23 =
C31 = 0 and Eq. (22) then gives

(3− t1)(1− t2)− |C12| = 0

C12 = 1

2
(T12+ T21), t1 = 1

2
Tr (T11), t2 = 1

2
tr (T22) (23)



         
Eq. (23) is the known result [1,3] for the tunes of the 2 normal
modes for coupled motion in 4-dimensional phase space.

In the 4-dimensional case, Eq. (23) can be solved to find the
two cosµi of the normal modes. This gives the result for cosµ

cosµ = 1

2
(t1+ t2)± 1

2

[
(t1− t2)

2+ 4|C12|
]1/2

t1 = 1

2
Tr (T11), t2 = 1

2
Tr (T22) (24)

|C12| = |T12+ T21|/4

where Ti j are the 2× 2 elements of the one turn transfer matrix.
If one computes T by multiplying the transfer matrices of all the
elements in the accelerator, then one can find cosµ, and theν
values, using Eq. (24).

Equation (24) is useful in tracking programs for finding the
normal mode tunes, from the one turn transfer matrix, for coupled
motion in 4-dimensional phase space.

A similar result can be found for coupled motion in 6-
dimensional phase space by solving the cubic equation, Eq. (22).

Equation (22) can be written as

33 + a23
2+ a13+ a0 = 0

a2 = −(t1+ t2+ t3)

a1 = t1t2+ t2t3+ t3t1− |C12| − |C23| − |C31|
a0 = −t1t2t3− Tr (C12C23C31)+ t1|C23| + t2|C31| + t3|C12|
t1 = 1

2
Tr (T11), t2 = 1

2
Tr (T22), t3 = 1

2
Tr (T33)

Ci j = 1

2
(Ti j + T j i ) (25)

The solutions of Eq. (25) when the 3 roots are all real, can be
written as [4]

cosµi = (t1+ t2+ t3)/3+ 2(r 2+ b2)1/6 cos(α/3+ δi )

δi = 0, 2π/3,−2π/3

b = |r 2+ q3|1/2

r = 1

6
(a1a2− 3a0)− 1

27
a3

2 (26)

q = 1

3
a1− 1

9
a2

2

tanα = b/r

Note that the 3 values ofδi , δi = 0, 2π/3,= 2π/3 will give the
3 roots from Eq. (26).

The condition for the 3 roots to be real is [4]

q3+ r 2 ≤ 0 (27)

If (q3+ r 2) > 0, then 2 roots are imaginary and the motion may
be unstable. In order to getq3 + r 2 ≤ 0 and stable motion, one
has to haveq < 0.

Equation (26) can be used in a tracking program to find the 3
normal mode tunes from the one turn transfer matrix. The one
turn transfer matrix can be computed by multiplying the transfer
matrices for each element in the lattice.
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