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Abstract should be clear from the context. This notation is used in several
The motion of a particle in 6-dimensional phase space in tH!aaC.es in this paper. . . .
) : ; |t is assumed that the equations of motions can be derived from
presence of linear coupling can be written as the sum of 3 normal. ioni o .
: L2 a hamiltonian, and the matrix T is symplectic:
modes. A cubic equation is found for the tune of the normal
modes, which allows the normal mode tunes to be computed T
from the 6x 6 one turn transfer matrix. This result is similar to
the quadratic equation found for the normal mode tunes for the
motion of a particle in 4-dimensional phase space. These results
are useful in tracking programs where the one turn transfer matfiss the transpose of . -
can be computed by multiplying the transfer matrices of each! is the 6x 6 identity matrix, andsS can be written in terms of

element ofthe lattice. The tunes ofthe 3 normal modes for motigri< 2 matrices as
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in 6-dimensional phase space can then be found by solving the S 0 0
cubic equation. Explicit solutions of the cubic equation for the s=| o0 s o 3)
tune are given in terms of the elements of the & one turn 0 0 S

transfer matrix.
The 2x 2 matrix, also called, is given by

[. INTRODUCTION S 0 1 @
The motion of a particle in 6-dimensional phase space in the B ( -1 0 )
presence of linear coupling can be written as the sum of 3 normal . . . .
. LS IS convenient to also write T in terms ofx2 2 matrices
mode. A cubic equation is found for the tune of the norma
modes, which allows the normal mode tune to be computed from Ti1 T2 Tis
the 6x 6 one turn transfer matrix. T=| Tor T Tas (5)
This result is similar to the quadratic equation [1] found for the Taz T3z Taz

normal mode tune for the motion of a particle in 4-dimensional
phase space. These results are useful in tracking programs wigte may note that the 2 2 matrices ofl are(T);j = T;i. The
the one turn transfer matrix can be computed by multiplying treéggenfunctions of the one turn transfer matrig¥ L, s), where
transfer matrices of each element of the lattice. The tune of thé 3s the period of the forces acting on the particle, obey
normal modes for motion in 6-dimensional phase space can then
be found by solving the cubic equation. Explicit solutions of the

cubic equation for the tune are given in terms of the elements OfBecause T is symplectic themifis an eigenvalue, /b is also
the 6x 6 one turn transfer matrix.

an eigenvalue [1,2] and the 6 eigenvalue can be arranged in 3
pairs of . and I/A. For stable motionjA| = 1 andx can be

T(s+L,s)x = xx

II. ACUBIC EQUATION FOR NORMAL MODE

written as
TUNES
The particle coordinates are assumed tappy, Y, py, Z, p. A= explip)
Then the linear motion of the particle about some central orbit n = 2mv, (6)

can be described by a6 6 transfer matrix Ts, S). . L
! y X TS, s0) where it is assumed that the period is one turn.

To find the tunes of the normal modes, one has to find the

X(s) = T(s, )X . . .
® (x So)X(%0) eigenvalues of Ti, which are given byT — Al | = 0, where|T|

b indicates the determinant of T. It is more convenient to find the

iy eigenvalues of the matrix C defined by
= g @) 1

y _

z C= > (T+T (7)

Pz

The eigenvalues of G\, are
Note that the symbot is used to denote the column veckoand
also the first element of this column vector. The meaning of

1
é(?» +1/%),
cosu (8)

*Worked performed under the auspcies of the U.S. Department of Energy. A



and theA are determined by This gives

[IC—All=0 ) fil Ci2 Cas
It is convenient to write C in terms of 2 2 matrices. Note |: 0 (@ —1Cul/t)l Cos = CaCia/ty :| (18)
that the 2x 2 elements of C are 0 0 tsl
Cij = (Tij + Tji)/2 (10) ~
and thus ts= [fs — [Cysl/T1 — |Ca3 — C21Cas/tal/(f2 — |Cr2l /TD) ]
Ci = }Tr (Ti)| The matrix _Eq. (18) is gtriangular matrix with zero elements
2 below the diagonal and its determinant, and titis- Al|, can
Cj = Cj (11) be computed by multiplying the diagonal elements which gives
We can then write C as IC—AlY2 = Ti(fz — |Cral/Ty) [Tz — |Cual/Ta
tyl Ci» Cis —|C23 — C1Ca3/tal/ (T2 — |Cr2l /T1)]
C= { o Bl S } (12) Ic— A1 = T [ — Cial /T1) (T — [Caal/T0)
uoE —|Cas — C21Caa/Ti ] (19)
f§ = %Tr ™) IC—AIY2 = (1/f) [ — [Caal) (a5 — [Casl)

To evaluatelC — Al|, C—Al will be multiplied from the left ~ICagts — Ca1Cusl]

by a sequence of matrices, each with determinant 1, to prod%esimp"fy Eq. (19), note the following result

a matrix which is upper triangular; that is, the elements of this ' ’

matrix below the diagonal are all zero. This triangular matrix |C,.f; — Cp1Cyall = (Casfy — C21C13)(Casfs — C13Co1)

has the same determinant as €1, and its determinant can be

found by multiplying all the diagonal elements of this matrix. _ [ Coalt2 — T (Co3C13Co1)T1 + |ConlIC ] | 20
First, multiply C— Al from the left by the matrix (Caslty r (C2sCraCanlts + Cal|Caal (20)

1 0 0 which gives
—Ca/ty 10 (13) |C— A1 M2 = §4T5Ta— 5| C1a| —T3ICral —F1| Caal+ T (C23Ca1Cr2)
0 0 1 (21)
f=t;— A Finally, the normalmodes tunes, which are givei®yAl| =0

are determined by the cubic equation
This matrix is designed to eliminate,and the multiplication

gives the result (A=) (A—12) (A—1t3) = (A—11)|Co3| — (A —12)|Ca1| — (A —t3) |Cy2]
il Ci Ciz —Tr(C12C23Cs1) =0
0  (t2—|Cu2l/t)l  Caz— CuCys/ty (14)
Ca1 Cao s A = cosu, w=2mv
— _ 1 1 1
The result G,C1, = |Cyo| has been used. Note thai;C= Cy». t1 = ET, (T, b= ET, (top), t3= ET, (Ts3) (22)
Now multiply the matrix Eq. (14) by the matrix
1 _
1 0 0 C= > (T+T
0 10 (15) 1
—Cay/ty 0 1 Gj = E(Tij +Tji)

which replaces the third row in Eq. (14) by the third row plugpe T; are the 2 2 elements of T and Care the 2 elements

—C31/1; times the first row giving of C.
Equation (22) is a cubic equation, and the 3 roots of this equa-
ul T C1z T C1a £ tion A; = cosu;,i = 1, 3 will give the 3 tunes of the normal
0 (- |C12l/t1)—| C—23 B C21C1—3/t1 (16) modeé )\ = MIZn Tf ’- is rea?the mode is stable; if has an
0  Ggo—GCa1Cro/ty (3 — [Cysl/ty)l wio= /2 1 ’

imaginary part then the mode may be unstable.
One more matrix multiplication is required to reduce £I to To getaresultfor 4-dimensional coupled motion, we pit€
an upper triangular matrix. Multiply matrix Eq. (16) by theC;; = 0 and Eqg. (22) then gives
matrix

= O

0

1
0 1
0 —(Cz2— Ca1Cyo/ty)/(t2 — |C2lty) O

1 — 1
Co= E(le +To), 1= ETr (T, 2= Etr (T22)  (23)

0 (A—t)(A—1) = [Ci2| =0
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Eg. (23) is the known result [1,3] for the tunes of the 2 normal

modes for coupled motion in 4-dimensional phase space. 1]
In the 4-dimensional case, Eq. (23) can be solved to find thé

two cosu; of the normal modes. This gives the result for gos 2]

1

1
cosu = E(tl +1t) £ > [(tl - t2)2 + 4|C12|]1/2 (3]
1 1
o= ST, b= T(T) (24) [4]
ICral = [Tio+ T2ul/4

where T; are the 2« 2 elements of the one turn transfer matrix.
If one computes T by multiplying the transfer matrices of all the
elements in the accelerator, then one can findugand thev
values, using Eq. (24).

Equation (24) is useful in tracking programs for finding the
normal mode tunes, from the one turn transfer matrix, for coupled
motion in 4-dimensional phase space.

A similar result can be found for coupled motion in 6-

dimensional phase space by solving the cubic equation, Eq. (22).

Equation (22) can be written as

A° 4+ @A’ +ayA+a=0

a = —Mi+th+ty)
a; = ftr 4 totz +taty — [Coo| — [Coz| — |Cayf
ag = —titotz — T, (C12C3Cz1) + 11]Cos| + t2|Ca1| + 3| Cyy
1 1 1
th = ETr (T1), o= ETr (Too), tz3= ETr (T33)
1 _
G = sM+Tp (25)

The solutions of Eg. (25) when the 3 roots are all real, can be
written as [4]

cosui = (ti+tr+13)/3+2(r? +b?Y®cosa/3+ 8)
& = 0,27/3,—2n/3
1 1 5
_ z _ _ = 2
r 6(a1az 3ap) 772 (26)
= la 1a2
q = 3%~ 5%
tane = b/r

Note that the 3 values &f, § = 0, 27 /3, = 27 /3 will give the
3 roots from Eq. (26).
The condition for the 3 roots to be real is [4]

@ +r2<0 (27)

If (q®+r?) > 0, then 2 roots are imaginary and the motion may
be unstable. In order to ggf + r? < 0 and stable motion, one
has to have < 0.

Equation (26) can be used in a tracking program to find the 3
normal mode tunes from the one turn transfer matrix. The one
turn transfer matrix can be computed by multiplying the transfer
matrices for each element in the lattice.
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