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Abstract

This paper defines the beta function and other linear orbit pa-
rameters using the exact equations of motion. Theβ, α andψ

functions are redefined using the exact equations. Expressions
are found for the transfer matrix and the emittance. The dif-
ferential equations forη = x/β1/2 is found. New relationships
betweenα, β, ψ andν are derived.

I. INTRODUCTION
This paper defines the beta function and the other linear or-

bit parameters using the exact equations of motion. The usual
treatment [1] of the linear orbit parameters is based on the ap-
proximate equation of motion

d2x

ds2
+ K (s)x = 0 (1)

Approximations are made in obtaining Eq. (1) which are usually
valid for large accelerators.

The exact linearized equations of motion can be written as

dx

ds
= A11x + A12px

dpx

ds
= A21x + A22px (2)

x andpx are the canonical coordinates in a curvilinear coordinate
system based on a reference orbit and theAi j (s) are periodic
in s with period L. The approximate Eq. (1) assumes that
A11 = A22 = 0, A12 = 1 andA21 = −K (s). The exact values
of the Ai j are given in [2].

A treatment of the linear orbit parameters based on the exact
equations, Eqs. (2), rather than the approximate Eq. (1) may be
desirable in the following situations:

1. Symplectic long term tracking using a procedure where the
magnets are replaced by a sequence of point magnets and
drift spaces. For the tracking to be symplectic, one has to
use the solutions of the exact equations of motion. The
linearized equations of motion then have the form of Eq.
(2).

2. Small accelerators where the approximations made in de-
riving Eq. (1) may not be valid.

Many of the results found using the approximate equations
carry over for the exact equations. A few of the changed results
are the following:

α = 1

A12

(
−1

2

dβ

ds
+ A11β

)
ψ =

∫ s

0
A12

ds

β
(3)
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ν = 1

2π

∫ C

0
ds

A12

β

whereC is the circumference of the accelerator.

II. EIGENFUNCTIONS OF THE EXACT LINEAR
EQUATIONS OF MOTION AND THE LINEAR

ORBIT PARAMETERS
The problem now is, given the exact linear equations of mo-

tion, Eq. (2), how does one define the linear orbit parameters
β, α, γ, ψ, ν and the emittanceε, and what are the relationships
that hold between them. To do this, one has to repeat the well
known treatment of the linear orbit parameters, and see where the
definitions and relationships change for the exact equations. The
treatment given below is believed to reduce the amount of alge-
braic manipulation required, and makes few assumptions about
the Ai j coefficients in the linear equations.

For thex motion, the linear equations are written as

dx

ds
= A11x + A12px

dpx

ds
= A21px + A22x (4)

The transfer matrixM(s, s0) obeys

x = M(s, s0)x0

x =
(

x
px

)
(5)

d

ds
M = AM

One may note that the symbolx is used in 2 different ways.
The meaning ofx should be clear from the context. The matrix
M is symplectic as the equations of motions are derived from a
hamiltonian. [1,3] Thus

M M = I

M =
∼
S

∼
M S (6)

S =
(

0 1
−1 0

)
, I =

(
1 0
0 1

)
∼
S is the transverse ofS. Also |M | = 1; |M | is the determinant
of M .

The one period transfer matrix is defined by

M̂(s) = M(s + L , s) (7)

whereL is the period of theAi j in Eq. (4). One can show that
M̂(s) andM̂(s0) are related by

M̂(s) = M(s, s0)M̂(s0)M(s0, s) (8)



            
The eigenfunctions and eigenvalues ofM̂(s) are defined by

M̂(s)x = λx,

|M̂ − λI | = 0, (9)

λ2 − (m11 + m22)λ + 1 = 0

wheremi j are the elements of̂M , and using|M̂ | = 1.
Eqs. (9) shows that the two eigenvaluesλ1, λ2 obey

λ1λ2 = 1, (10)

and for stable motion,|λ| = 1 andλ2 = λ∗
1, and we can write

λ1 = exp(i µ) (11)

Given the eigenfunction ats0, x1(s0) one can find the eigen-
function or any other points using

x1(s) = M(s, s0)x1(s0), (12)

andx1(s) has the same eigenvalueλ1. This follows from Eq. (9),
using Eq. (8) to relateM̂(s) and M̂(s0). Also x1(s) obeys the
linear equations of motion,

d

ds
x1 = Ax1, (13)

which follows from Eq. (12) and Eq. (5). One can show that

x1(s)/λ
s/L
1 = f1(s), (14)

where f1(s + L) = f1(s). This follows from

f1(s + L) = x1(s + L)/λ
s/L+1
1

= M̂(s)x1(s)/λ
s/L+1
1 = x1(s)/λ

s/L
1

Thus, one can write

x1(s) = exp(i µs/L) f1(s)

f1(s + L) = f1(s) (15)

Eq. (15) can be rewritten as

x1(s) = β(s)1/2 exp(i ψ)

ψ(s) = µs/L + g1(s) (16)

g1(s + L) = g1(s), β(s + L) = β(s)

Eq. (16) defines the beta functions,β(s), except for a normaliza-
tion multiplyer, for the eigenfunctionx1(s). The normalization
multiplyer will be defined below. It will be shown first thatψ

andβ are related. To find this relation, one uses the Lagrange
invariant [1]

W =∼
x2 Sx1 (17)

wherex1, x2 are two solutions of the equations of motion. Eq.
(17) corresponds to the Wronskian in the treatment of the ap-
proximate equations of motion. Forx1 andx2, we use the two
eigenfunctionsx1 andx2 = x∗

1.

x1 =
(

x1

px1

)
(18)

Forx1 one uses Eq. (16) and forpx1 one finds from the equations
of motion

px1 = 1

A12

(
dx1

ds
− A11x

)
(19)

W = x2 px1 − px2x1

W =
[

x2
dx1

ds
− x1dx2

ds

]
1

A12
(20)

W = 2i

A12
β

dψ

ds

The beta functionβ is normalized by normalizing the eigen-
functions so that

W =∼
x

∗
1 Sx1 = 2i (21)

which gives
dψ

ds
= A12

β
(22)

Eq. (22) replaces the familiar resultdψ/ds = 1/β which is ob-
tained whenA12 = 1. From Eq. (22) one can find a result for the
tune. Using 2πν = ψ(C) − ψ(0) whereC is the circumference
of the accelerator, one finds

ν = 1

2π

∫ C

0
ds

A12

β
(23)

From Eq. (19) we now find forpx1,

px1 = 1

β1/2
(i − α) exp(i ψ) (24)

α = 1

A12

(
−1

2

dβ

ds
+ A11β

)
(25)

Eq. (25) provides the new definition for theα parameter, which
replaces the familiar resultα = − 1

2dβ/ds. At this point the
definition of α may seem arbitrary. It will be seen to be the
convenient definition ofα when the emittance and transfer matrix
are considered.

The eigenfunctions can now be written as, using Eq. (16) and
Eq. (25),

x1 =
[

β
1
2

β− 1
2 (−α + i )

]
exp(i ψ)

x2 = x∗
1 (26)

For the results for the emittance and transfer matrix, see [2].

III. DIFFERENTIAL EQUATIONS FOR THE
LINEAR ORBIT PARAMETERS

This section finds differential equations forβ, andη

A. Second Order Differential Equation for x

From the first order differential equation forx, px, Eq. (4),
one can eliminatepx to find a second order equation forx. See
[2] for details

d

ds

(
1

A12

dx

ds

)
+ x

(
−A21 − d

ds

(
A11

A12

)
− A2

11

A12

)
= 0 (27)

It has been assumed thatA11 = −A22.



            
B. Differential Equation forβ

To find a differential equation forβ, into Eq. (27) forx put
the eigenfunction

x = b exp(i ψ)

b = β1/2 (28)

We find then, see [2] for details,

d

ds

(
1

A12

db

ds

)
− A12

b3
+ b

(
−A21 − d

ds

(
A11

A12

)
− A2

11

A12

)
= 0

(29)
Eq. (29) is a second order differential equation forb = β1/2. It

can be compared to the result found whenA12 = 1 andA11 = 0,

d2b

ds2
− A12

b3
= 0 (30)

C. Differential Equation forη

η andx are related by

x = b η, b = β1/2 (31)

In the differential equation forη the independent variable isψ
or θ which are related tos by

dψ = A12
ds

β

dθ = A12
ds

νβ
(32)

We finddx/dsandd(A−1
12 dx/ds)/dswhich are then substituted

into Eq. (27) to get the equation forη, using Eq. (29) to eliminate
derivatives ofb. This gives, see [2] for details,

d2η

dθ2
+ ν2η = 0 (33)

The differential equation forη is unchanged.

IV. PERTURBATION THEORY USING THE
DIFFERENTIAL EQUATION FORη

The equation forη, Eq. (33) is often used as a starting point in
finding the effects of a perturbing field. The particle coordinates
are measured relative to a reference orbit which is the particle
motion in a known magnetic field with componentsBi . The
exact equations of motion can then be written as

dxi

ds
=

∑
j

Ai j x j + fi i = 1, 4, j = 1, 4 (34)

where the fi includes all the terms not included in
∑

Ai j x j .
These include terms due to fields not included in the reference
field Bi , which may be referred as1Bi , and nonlinear terms due
to the terms in the exact equations of motion that do not depend
on Bi .

One can see from the exact equations of motion, that the con-
tributions to fi which depend explicitly on1Bi , when1Bs = 0,

are given by

f2 = 1

Bρ
(1 + x/ρ)1By

f4 = − 1

Bρ
(1 + x/ρ)1Bx (35)

Repeating the above derivation of Eq. (33) forη, including the
fi terms, one finds theη equation for thex-motion

d2η

dθ2
+ ν2

xη = ν2
xβ

3/2
x

A12
fx

fx = f2 + A2
11

A12
f1 + d

ds

(
f1

A12

)
(36)

dθ = A12
ds

νxβx

A similar equation can be found for they motion,

d2η

dθ2
+ ν2

yη = ν2
yβ

3/2
y

A34
fy

fy = f4 + A2
33

A34
f3 + d

ds

(
f3

A34

)
(37)

For the case of a gradient perturbation

1By = −Gx (38)

one can use Eq. (36) to find the change inνx, 1νx. One finds

1νx = 1

4π

∫
dsβx

G

Bρ
(39)

This well known result for1νx is not changed by using the exact
linear equations.

References
[1] E.D. Courant and H.S. Snyder, Theory of the Alternating

Gradient Synchrotron, Annals. of Physics, Vol. 3, p. 1 (1958).
[2] G. Parzen, Linear Orbit Parameters for the Exact Equations

of Motion, BNL Report AD/RHIC-127, BNL-60090 (1994).
[3] F.T. Cole, Notes on Accelerator Theory, MURA report, TN-

259 (1961).


