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Abstract 1 (¢ Ap
v = — ds—=

This paper defines the beta function and other linear orbit pa- 2r Jo B

rameters using the exact equations of motion. Bhe andy \yhereC is the circumference of the accelerator.

functions are redefined using the exact equations. Expressions

are found for the transfer matrix and the emittance. The dit EIGENFUNCTIONS OF THE EXACT LINEAR
ferential equations fo = x/B%/? is found. New relationships EQUATIONS OF MOTION AND THE LINEAR

betweery, 8, ¢ andv are derived. ORBIT PARAMETERS

The problem now is, given the exact linear equations of mo-
. INTRODUCTION tion, Eq. (2), how does one define the linear orbit parameters
This paper defines the beta function and the other linear @r-«, y, ¥, v and the emittance, and what are the relationships
bit parameters using the exact equations of motion. The ustiat hold between them. To do this, one has to repeat the well
treatment [1] of the linear orbit parameters is based on the &mown treatment of the linear orbit parameters, and see where the

proximate equation of motion definitions and relationships change for the exact equations. The
) treatment given below is believed to reduce the amount of alge-
d*x +K@E)x=0 (1) braic manipulation required, and makes few assumptions about
ds? the Ajj coefficients in the linear equations.
Approximations are made in obtaining Eq. (1) which are usually For thex motion, the linear equations are written as
valid for large accelerators. dx
The exact linearized equations of motion can be written as I Ar1X + APy
dx dpx
45 = Ap1X + Aropx d4s = Ao1py + AzoX 4)
dd_px = AnX+ AxpPy 2) The transfer matridM (s, sp) obeys
S
x andpy are the canonical coordinates in a curvilinear coordinate x = M(s s0)Xo
system based on a reference orbit and A&s) are periodic X = < X ) (5)
in s with period L. The approximate Eg. (1) assumes that Px
A1 = Ap =0, App = 1 andAy; = —K(s). The exact values d AM
of the Ajj are given in [2]. ds =

A treatment of the linear orbit parameters based on the exact . . _
equations, Eqgs. (2), rather than the approximate Eq. (1) may{ae may note that the symbglis used in 2 different ways.
desirable in the following situations: The meaning ok should be clear from the context. The matrix

1. Symplectic long term tracking using a procedure where M4 is symplectic as the equations of motions are derived from a

magnets are replaced by a sequence of point magnets Bagniitonian. [1,3] Thus
drift spaces. For the tracking to be symplectic, one has to

use the solutions of the exact equations of motion. The MM - INN
linearized equations of motion then have the form of Eq. M = SMS (6)
). s — < 0 1) | — <1 O>

2. Small accelerators where the approximations made in de- - -1 0)/)° —\0 1

riving Eq. (1) may not be valid.

Many of the results found using the approximate equatio@siS the transverse d&. Also |M|
carry over for the exact equations. A few of the changed resulfs),

are the following:

= 1; IM] is the determinant

The one period transfer matrix is defined by

1 1dB -
= — (==X M(s) =M(s+1L,s 7
o AL, ( 5 ds + A]_jﬂ) (s ( ) ( )
s ds whereL is the period of theA;j in Eqg. (4). One can show that
Vo= /O Alzg 3) M (s) andM (so) are related by

*Work performed under the auspices of the U.S. Department of Energy. M (s) = M(s, ) M (s9)M (59, S) (8)



The eigenfunctions and eigenvaluesl\b{s) are defined by Forx; one uses Eqg. (16) and fpg, one finds from the equations

- of motion L /d
M(S)X = X, ( X1 )
. = — | — — Auix 19
NM_al| = o ©) Px1 An \ ds 11 (19)
A—(Mu+m)i+1l = 0 W = Xopa — et
- X1 — X
wherem;; are the elements dfl, and usingM| = 1. W= [ @a_xde] 1 20)
Egs. (9) shows that the two eigenvalugsi, obey - 2ds ds | A
2 d
Ahe =1, (10) W o= A—lzﬁ—li
and for stable motiora| = 1 andi, = 17, and we can write The beta functiorg is normalized by normalizing the eigen-
. functions so that
A1 = exp(ip) (12) W :;; Sx = 2i 1)
Given the eigenfunction &b, x;(Sp) one can find the eigen- which gives
function or any other poirg using d_l// _ A 22)
ds B

X1(8) = M(S, S0 (%), (12) Eq. (22) replaces the familiar resuliy /ds = 1/8 which is ob-

using Eq. (8) to relatd/(s) and M (so). Also x.(s) obeys the tune. Using 2v = ¥ (C) — ¥ (0) whereC is the circumference

linear equations of motion, of the accelerator, one finds
d 1 c A12
— = — - 2
d—SX]_ = AXq, (13) v 27'[/(; ds /3 ( 3)
which follows from Eq. (12) and Eq. (5). One can show that From Eq. (19) we now find fopya,
1 . .
xu®)/4y" = fa(o), (14) Pa = gl — 0 expiv) (24)
where fi(s+ L) = f1(s). This follows from 1 1d
1(s+L) 1(8) o = (___’3 ~|—A11ﬂ> (25)
S/L+l A12 2 dS
fis+L) = Xxi(s+ L)/)‘l
Y s/L+1 s/L Eq. (25) provides the new definition for teparameter, which
= MEOXE/A =xd)/h replaces the familiar result = —1dg/ds. At this point the
Thus, one can write definition of « may seem arbitrary. It will be seen to be the
convenient definition af when the emittance and transfer matrix
x1(s) = expius/L)fi(s) are considered.
fis+L) = fi(s) (15) The eigenfunctions can now be written as, using Eq. (16) and
Eq. (25),
Eq. (15) can be rewritten as 1
X1 = [’321 . }exp(igﬁ)
xi(s) = BV expiy) pr2(—a+1)
¥ = us/L+a(o) (16) X = X (26)
qus+L) = gi(s), B(s+L)=48() For the results for the emittance and transfer matrix, see [2].
£a. (19) defines the beta functiois), exceptior anormaiza- j|. DIFFERENTIAL EQUATIONS FOR THE
ion multiplyer, for the eigenfunctior;(s). The normalization LINEAR ORBIT PARAMETERS

multiplyer will be defined below. It will be shown first that

and g are related. To find this relation, one uses the LagrangeThis section finds differential equations 6y andy

invariant [1] . . .
W =X, Sx (17) A. Second Order Differential Equation for x

. . . From the first order differential equation far px, Eq. (4),

wherexy, X, are two solutions of the equations of motion. Egy o .o eliminatgy to find a second order equation for See

(17) corresponds to the Wronskian in the treatment of the ata] for details
proximate equations of motion. Fa&g andx,, we use the two
eigenfunctions; andx, = x*. d/1d d /A A2
g Lt =2 G =) i x(—Ap— = (D1) 2 g (27
ds \ Ao ds ds \ Az A1z

X
= ( px1> (18) It has been assumed thaf; = —Agp.



B. Differential Equation foB are given by

To find a differential equation fof, into Eq. (27) forx put 1
the eigenfunction f, = B_,o(l +X/p)ABy
. 1
X = bexpiy) fa = —o-(1+x/p)AB, (35)
b = p¥2 (28) p

Repeating the above derivation of Eq. (33) folincluding the

We find then, see [2] for details, f; terms, one finds the equation for thex-motion

d 1 db Alg < d <A11> Ai) 2 2,3/2
——=)-="+b[-An—-—(—)-E)=0 d*n vy Bx
ds (AlZ dS) b3 27 ds A1 A 492 +vin = XA12 fx
Eq. (29) is asecond order differential equationfes g2, It fo = fout AL f, + d (L) (36)
can be compared to the result found when = 1 andA;; = 0, Arp ds \ Az
ds
d A do = Aw
e 20 P

) . ) A similar equation can be found for themotion,
C. Differential Equation fom

3/2
n andx are related by d?y L2y — Vszlﬂy/ f
12 doz " A
x=bn, b=p (31) A2 d [/ f
b= RSt (2) @
In the differential equation fon the independent variable is Asa S\ Ass
or 6 which are related ts by For the case of a gradient perturbation
dy = Alz%s ABy = —-Gx (38)
q _ , . _ ,
d0 - Alz_s (32) one can use Eqg. (36) to find the change,inAv,. One finds
vh 1 G
A= = / dspy— (39)
We finddx/dsandd (A, dx/ds)/dswhich are then substituted 4r Bp

into Eq. (27) to getthe equation fgrusing Eq. (29) to eliminate

derivatives ob. This gives, see [2] for details, This well known result for\ v, is not changed by using the exact

linear equations.
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finding the effects of a perturbing field. The particle coordinates
are measured relative to a reference orbit which is the particle
motion in a known magnetic field with componer®s. The
exact equations of motion can then be written as

d.
=Y AR i=l4j=14 (34
j

where thef; includes all the terms not included )\ A;jX;.
These include terms due to fields not included in the reference
field Bj, which may be referred asB;, and nonlinear terms due
to the terms in the exact equations of motion that do not depend
onB;.

One can see from the exact equations of motion, that the con-
tributions to f; which depend explicitly ol B;, whenABg = 0,



