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Abstract hy = —0A, /0y, hy=0A,/0z,
The joint effect of an arbitrary sum resonance and a linear cou- O AH. 4 iAH
pling resonance), — Q. = 0 on stability of betatron oscilla- A (z,y,s) = Z Qy’Z . 20 (2 4 iy)" T + c.c.
tions in a circular accelerator is studied. The presence of linear n=0 r(n+1)

coupling is shown to result in splitting of the cluster of sum res- . o
onance straight-lines into a family of hyperbolic curves. THENEreAH, .(s), AH, »(s) are additions o the field introduced

analytic results obtained are verified by numerical simulation8Y then-th order normal and skew nonlinearities, respectively,
taken af(x = r,y = 0); r is a reference radius.

Up to the first order in perturbation, equations of betatron mo-

|. INTRODUCTION tion of the on-momentum particle in such a field acquire the
At present, the design employed of SC dipoles for high ener§gnonical form, Ref.[9]:
accelerators does not ensure the smraslgh values of the skew
guadrupole field errors, Refs.[1],[2]. This gradient brings about % = —%, % = %, (1)
the major contribution to linear coupling between horizontal ( ¢ ¢
and vertical () betatron oscillations. _ 2Bmaz Ro A(C,0)
The effect of this coupling on the motion has been studied rHR T

in many papers (refer, say, to Refs.[3]-[8]) of which we would ¢ = r /ﬁg(H)/ﬁmax\/ECOS(ﬂg(é’) + 1)

distinguish quite a rigorous and consistent Ref.[8]. These pa-

pers treat the problem in terms of normal oscillation modes aghere is an equation symbol for eitheror y; R, and R are

the relevant tuneg); », the latter being quite distinct from thethe average and curvature radii, respectively, of the reference

unperturbed betatron tunék. ,. However, to analyze the joint orhit in field H; 6 is a generalized azimuth which may be ex-

effect of linear coupling and magnetic nonlinearities, it mighfressed by the longitudinal coordinatasé = s/ Ro; Bc(0) is

be more convenient to emplay, y-modes of the unperturbedpeta-function angi, = Q0 + y. is unperturbed phase with a

oscillations. periodic party¢(6). Thus,,/I; is the¢-oscillation amplitude
In frames of the first-order perturbation approach, linear co§ormalized tor and taken at azimuth wherg = Ba.. The

pling shows itself up as an excitation of sum and difference r&perator(. . ) denoting the averaging ovérremoves fast har-

onancesy, + (). = k. Being treated isolately from the othermgnics.

resonances, the linear difference resonance is, by itself, not dansy taking into account the periodic dependenceéobn ji =

gerous for the motion of beam with equal betatrorand y- (12, pty) @nd azimuthy, one can put down

emittances. The total energy of 2-D oscillations being kept in-

tact, this resonance gives rise to energy exchange between oo .
and y-directions. Nonetheless, such a resonance can resultin . = »_ > Dax(le, I,) exp{i(i@ — k)0 + ifiif}
an unstable motion in the presence of an additional sum reso- k=—co 7
nance (not necessarily driven by the skew quadrupole) which 1 2 p2m p27 3c(6)
is far enough from the working point not to inflict any danger,Dz r = W/ / / Dir ﬁ—ﬁcos ag, 0}
provided the “switched-off' linear difference resonance. o Jo o mas

The common vision that the loss of stability occurs only on xexp {i[k6 + X (0) — id]} dagdaydf

the conditionﬁé = k being satisfied seems to be not quite . )

the case. It does hold true for the isolated sum resonanf@€re = (nz,ny), nay, k are integers. _

given there exists only one such a resonant straight line in plané_l-he resonant harmonics enteP) as complex conjugated
{Q., Q,} near the working point. By a simple example of joinP@rs, {7, k} and {7, —k}, which are responsible for excita-
action of an arbitrary.-th order sum resonance and a linear difion of 7@ = k resonance. The infinite increase of the total
ference resonance, it would be shown here that there exis@Ngr9y! = /. + 1, is possible under the impact of the isolated

family of (n + 1) hyperbolic curves in the betatron tune plane M resonancé with n, - n, > 0. Due to this reason, the

which the loss of stability is possible. 1-D resonanced = (n,,0) and# = (0,n,) should rather be
treated as sum ones. Simplify expression for amplitiide of
II. ANALYTIC RESULTS the resonant harmonic by retaining the contribution only from
o ) the nonlinearity of minimal power allowed for the given order
A. Betatron Oscillations of the Reference Particle of resonance. Then

Componentsh, , of the magnetic field imperfections are
expressed in terms of the longitudinal vector potential : Dy, = Pﬁyk\/ﬂx””'I@',”y',



nj_Z\/ﬂf" I x

P — BmaxRO /W |nZ|6|ny| k€+nx)d6 K

' rn 4ﬁm(w)
AHy o AHp X {fﬁ,j exp{i [mnﬁﬂm + (n—j)ml} +cc}
Wi = TCOSgInyI - |ny|} Faj = Parpsjexpli(ne —ny)(arg P p)/2}
wheren = |n.| + |n,| is the order of a resonance. prj = lmi:x (~1)" <nly) (n_x 1) X
Let the cross- p0|n¢2* of the n-th order sum resonance with I1=lmin J
the line of difference resonanegq = p, m = (—1,1) be re- % (cos ) v =2 (gin o)e I+

ferred to as thex-th order cluster. No more thgm + 1) sum [ 07— / _ g
resonances of-th order can cross such a nodée= (n — j, j) mn = Wax{0ij—ne}, lmax = min{jiny}
wherej = 0,...,n. All these resonances can be driven by the¢»,; = (0o +0y)/2+w(l —2j/n)
same(n — 1)-th power field nonlinearity.

The joint effect of a sum resonangeand a difference res-
onancem near @, is described in terms of varlable{sf 7}
through the canonical Eqgs.1 with Hamiltonian:

Any of K3 ; can result in an infinite increase of the total energy
of oscillations, given certain resonant conditions are fulfilled. In
absence of a difference resonantehere would have been a
single straight lingid = 0 in the plane{é,, d, }. However, on

(D) = {Py,e™ +cch/TT, this resonance being taken into account, as@h afl) resonant
o curvese, ; = 0 emerge. These curves are given parametrically
+ {Pare™ + et/ 0y (2) through Egs. to follow,

whered = 36+ 7; § = (G — @.) is the working point detuning (gx) = _% { <+D cos 2a -+ G) (1- Qj/n)}
from the clusterp, , > 0. y sl 2o A\~

Depending solely on the cluster order these curves form
a family of hyperboles with asymptotes being given by
Study of motion in the vicinity of the isolated difference red, + d, + |§, — §|(1 — 2j/n) = 0. It can be easily found that
sonancen shows that any particle has ifs,, varying harmon- the asymptotes coincide with resonant lines of allitkté order
sum resonances which may cross the cluster in question. Thus,
he “switching-on' of the difference resonance yields splitting of
Re sum resonance's cluster.
Figs.1a,b, wheré\. designates. /| Py, |, show the splitting

B. Effect of Isolated Difference Resonanite

ically with a frequency 2w = 2\/|P,,—W|2 + (md/2)2. Fre-
guencyw does not depend on oscillation phase and amplitmi
which allows one to transfer to new variablgs, andz; », the

latter being the integrals of motion, of sum resonances = (1, 1) and@ = (3,0) driven by a skew
Vet Tieim field gradient and a normal sextupole, respectively. The width
( e ) = T(¥) M(a) T(~wb) ( Ve ) (3) of splitresonant lines is chosen as proportiongl4g.

[I. COMPUTER SIMULATION

. eV 0 . cosa  sina _ _ ) )
TW) = 0 e~ /0 M(a) = —sina  cosa Assume the field imperfections that excite resonarcasd
m under study be localized at the quadrupole centers ao¥all
cells of an accelerator. uppose, that at these centers the fol-
| Py lowing conditions are mets, jo. = By def = Bmax, Po,def =
o, 0<a<m/2 By, 1oc = Bmin, betatron phase advance between centers of adja-
w+mé /2 Y ! )
cent F- and D-quads being the same. Take the following parame-
Transformation by Eq.3 does not change expression for tfee values appropriate to the UNK casé:= 160, » = 35 mm,
total energyl = I, + I, = I + I». Bmax = 152 m, fin = 32 m. Distribute field imperfections
) along the lattice so as to excite in the vicinity of the working
C. Effect of Difference Resonance and Sum Resonance  point only a sum resonanceand a linear difference resonance

Whenever simultaneous effect of a suipand a difference, ™ With arg Pz , = 0 andarg P, , = 0.
m, resonances in the neighborhood of théh order cluster is : S
taken into account, the quantitiés,, 7 » would no longer be A. Joint Effect ofi = (1,1) andsi = (~1,1)
integrals of motion. Still, the use of these variables as indepenEffect of these two resonances treated in variabjes 7 -
dent ones allows us to transfer from Hamiltonian, Eq.2, to a né@sults in emerging of three splitresonant lines in plghed, },
one, K, in terms of which the resonane# would be formally see Fig.1a. Take the splitresonarice 2 and treat it separately
absent. According to Egs.1, 3, on being put down in terms #em the others. In such a case

new variables, the Egs. of motion would retain their canonical )
nature: K~ K2 = —I{|Psg|-sin2a}cos(2e250 + 2m)  (5)

2 = 30 + arg Pg, ,, tana =

dI; oK dn; 0K . and, thus,7; andn, are kept intact, i.el>(¢) = I2(0) and

o~ oy 40 ~ oI’ 1=1,2 ) n2(6) = 12(0). Put the working point exactly at the resonant




curvees »(a) = 0. Then Eqgs.4, 5 withy; (0) = +7/4 yield References
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1(6) = I(0) exp{42|Ps x| sin 2a - 0} (6) [3] E.Courant, H.Snyder, Ann. of Physics, 3, p.1, (1958).

~ [4] D.A.Edwards, L.C.Teng, IEEE Trans. on Nucl. Sci., NS-
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wheret = 1/2 andt = 1 for F- and D-quads, respectively. i @ A —
Fig.2 shows the values df#) calculated via Eq.6, and via the sf | wis 1
numerical tracking during a hundred of turns with; | = = 4 e 6
0.01,|Psp| = 0.1,1(0) = 1.0fork = 73, p = 0,a = 80°,i.e. *r o K
d = 0.56713,4, = 0.01763. The agreement of results is fairly =|_, ‘ 1 2
well. 0 <% reiil
B. Joint Effect ofi = (3,0) andm = (—1,1) i 1
As in the previous example, for isolated split resonanee3 : | :
one has . L L4 L

-10

oL
=

K~Kz = 3/ Pi | - cos® a} cos(3es3 5(a) -6 + 3
a = L Pl yeos(3ea,3(a) m Figure 1. Splitting of sum resonances: = (1,1)(a), @ =

Herefrom, I,(0) = 12(0), n2(0) = n2(0), and, given the (3,0)(b)
position of the working point exactly at the resonance line

ez 3(a) = 0 with initial values#:(0) = +x/6, one gets
n1(#) = const, while the expression for the total energy of os s =
cillations at/»(0) = 0 acquires the form of asp 169 ( ) o7
4 d
1(0) = I(0) - {1 F 33/ Io| Py | cos® - 0}~ 8) s} -4
For the preset values 0P; | and| Py , | the distribution of the | .
skew gradient is still given by Eq.7, provided a single differ , | y 04
ence resonancé is excited, while the distribution of quadratic s /
nonlinearity acquires the form of 4
y acq ;_S IR N
Ally»As A8T | Pl i o
THRr ), N B - P TR e v o
VB ax cos{#(l - 1)} forF Figure 2. Comparison of theory (—) against trackirg for
Y ﬁmaxﬁmin COS{#U — 1)} for D n= (1’ 1)(&) andri = (3’ 0)(b)
Fig.2b shows the values of the total enerffy)) calculated
with Eq.8 and numerical tracking results fdt; .| = 0.01,

|Pspl = 0.1, 1(0) = 0.33 for k = 110, p = 0 a = 80°, i.e.

d, = 0.56713,6, = 0.01763. The quantitative disagreement
of theory against the numerical results can be accounted for by
the second-order effect introduced by the quadratic nonlinearity
which were omitted in the analytical treatment. Nevertheless, at
least the qualitative agreement is still satisfactory.

IV. CONCLUSION

The presence of linear difference resonance changes the loca-
tion and shape of resonant lines in plane of unperturbed betatron
tunes. Namely, the cluster of sum resonances is split into family
of hyperbolic resonant curves. These split resonances are capa-
ble of increasing the total energy of oscillations and, thus, can
decrease the dynamic aperture, which has been found in Ref.[8].



