
 

Lienard-Wiechert (LW) fields, which are exact solutions of the
Wave Equation for a point charge in free space, are employed
to formulate a self-consistent treatment of the electron beam
dynamics and the evolution of the generated radiation in long
undulators. In a relativistic electron beam  the internal forces
leading to the interaction of the electrons with each other can
be computed by means of retarded  LW fields. The resulting
electron beam dynamics enables us to obtain three dimensional
radiation fields starting from an initial incoherent spontaneous
emission, without introducing a seed wave at start-up. In this
paper, we present electromagnetic radiation studies, including
multi-bucket electron phase dynamics and angular distribution
of radiation in the time and frequency domain produced by a
relativistic short electron beam bunch interacting with a circu-
larly polarized magnetic undulator.

 

 1. INTRODUCTION

 

The coherence characteristics of the radiation fields produced
by a beam of relativistic electrons moving along a magnetic
undulator depend on the degree to which electrons become
organized under the influence of the ponderomotive force. Our
approach shows that making use of the complete electric and
magnetic fields produced by a point charge, the longitudinal
beam dynamics of the particles is governed by the “near -” and
“far zone” fields. Electric field components in the near zone are

composed of terms falling off  as R
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 corresponding  to  radiation fields.
The latter combined with the undulator fields gives rise to the
ponderomotive force. For sufficiently high density electron
beams, depending on the pulse length and axial charge distri-
bution within a radiation wavelength, “near zone” fields have
considerable effects on the longitudinal motion of the electrons
and the associated  bunching process,  altering the characteris-
tics of the produced radiation.
The purpose of this paper is to point out the way  LW fields can
be exploited in obtaining spectral and temporal behavior of the
radiated fields for the self amplified spontaneous emission
(SASE) process. In our formulation, rather than solving self-
consistently the paraxial wave equation coupled to the relativ-
istic single-particle equations of motion, we first  compute
retarded LW fields with few assumptions to drive the electron’s
motion. Since the fields are evaluated in the time domain, the
used approach allows their interaction with the electron beam
with no restrictions on the frequency spectrum. Knowing all
variables of the motion, such as retarded position, velocity, and
acceleration of the charge, amplitude of the fields radiated by
individual electrons in the beam are determined and summed at
a observer surface far from the source. For simplicity, we con-
sider in our simulations a filamentary sub-picosecond relativis-
tic electron bunch which is substantially shorter than the
slippage length.  

Many simulation codes of free electron laser amplifiers utilize
a single ponderomotive potential well imposing periodic
boundary conditions at the bucket ends, thus neglecting slip-
page effects. Based on the formalism employed here, both  the
evolution of the multi-bucket electron phase space dynamics in
the beam body as well as edges and the relative slippage of the
radiation with respect to the electrons in the considered short
bunch are naturally embedded into the simulation model.  
A description of the particle and field dynamics underlying the
code is outlined in section 2 followed in section 3 the numeri-
cal results demonstrating the evolution of the radiation in the
time domain and its angular distribution. Here we study the
evolution of the radiation for a monoenergetic beam with uni-
formly spaced electrons along the radiation wavelength as well
as a pulse with shot noise in the electron phases. 

 

2. PARTICLE AND FIELD DYNAMICS

 

The electric and magnetic fields produced by a point charge q

moving along a trajectory  with relativistic energy 
can be derived from the well known LW potentials. For the
electric field strengths we have [1]:

All quantities in (1) have to be evaluated at the retarded time t
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The retardation condition  connects the
observation point time t to the source point time t
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 where R rep-
resents the distance between the two points. The evolution of
the three dimensional resultant radiation field can be deter-
mined when individual field contributions of all charges in the
beam are superimposed in any  point at the observer surface.
Since LW fields are expressed in terms of particle’s retarded
position and it’s time derivatives, relativistic Lorentz force
equations for a coupled electron beam - radiation system have
to be solved in a self-consistent way to describe completly par-
ticle’s motion.  The transverse motion is almost entirely deter-
mined by  the undulator magnetic field, whereas the axial
motion of  each electron is defined by  the combined undulator
and the resultant LW field produced by other electrons in the
beam. The for the FEL mechanism crucial axial electron
dynamics can be obtained directly from the equation for the
energy exchange between the electron and LW fields. The
equation for the energy change of the i

 

th

 

  electron :. 

The electric field is a resultant field at the position of the ith
electron obtained by summing up  LW field contributions from
the rest of the charges in the beam. The summation is imple-
mented   by  including Doppler upshifted and downshifted
parts of the radiation  fields. The latter  has, however, much
smaller influence on the motion of the particles if the beam is
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highly relativistic.

To compute the field contribution of individual electrons to the

summation, the retarded  values of R, , , and  have
to be determined from the  present position of the particles in
the undulator and be inserted into (1).  The retarded distance R
is given by     

where x, y, z and  represent the coordinates of  the elec-
tron’s present and retarded positions.  At this point we intro-
duce new  dimensionless longitudinal position variables

, ,  retarded distance ,  retarded
axial distance , and present axial distance

  where prime denotes evaluation at retarded
time and  i, j refer to the particle’s index in the beam. With the
assumption of having a uniform longitudinal motion  (  con-
stant)  during a numerical   integration step for the energy
exchange and employing the retardation condition,  can be
obtained by solving the equation: 

The solution establishes the relation between the position of
the source electrons at the time of emission and the position of
the observer electron at the time of  reception  where the
Lorentz force is exerted  on that particular electron  by the
resultant field. Arranged  in inverse powers of , the rate of the
energy  exchange  takes the form:

where we introduced the dimensionless time variable
.  and  the axial unit vector component  are

given by:

respectively. The factor in the denominator, , can be
expressed by
Accounting for all forces involved in the electron-wave inter-
action, except for self radiation reaction, (3)  gives a complete
description of the change of electron’s energy  along the undu-
lator. The term falling off as  (~  )  contains  the com-
bined undulator-radiation fields  causing modulation of the
beam energy with subsequent bunching of the electron beam.
The terms decreasing as  and  dominate at a distance
close to the source. Thus  we refer them as “near zone” fields.
The factor 
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describes the Coulomb interaction between the particles. It
competes with the ponderomotive force reducing the depth of
the  ponderomotive potential well thus preventing particles
from being trapped in the potential buckets. The rest of the
“near  field”  terms  are combined with the undulator fields and
contributes to the energy modulation of the beam provided that
the distance between the electrons are much smaller than the
radiation wavelength. These fields would  vanish in the
abscence of an undulator. The numerical integration of   (3)
together with the relation 
allows  us finally  to obtain the longitudinal motion  of  the
electrons.

Having  the knowledge of the position  of  each  electron  and
it’s  time derivatives we can elaborate on the radiation evolu-
tion at a spherical surface  of  observation making use of  the
radiative part of  (1).  Superposition  of  fields emitted  by  each
electron yields the resultant field:

Introducing the far-field assumption 
where D is the distance from the observer to the entrance of the
undulator and the unit vector  specifying  the observation
direction   ,    and
R(tr) may  be  approximated  as:
     and

respectively.  We use here the fact that the radiation pattern
emitted by a charge in a helical undulator  is azimuthally sym-
metric around z-axis, and  confined to  angles  of  the  order of

 .  Noticing that   for the considered
short bunch , where  is the bunch length, we can  evaluate
time structure and frequency composition of the radiated field
components  and  at any point over the observer surface.
The  time  evolution  of  the  angular  distribution  is  deter-
mined  by  The total radiated power
can be obtained performing the integral over the solid angle:  

where . The time integration of (4) over the radia-
tion pulse yields  the total radiated energy.  

Evaluating Jackson’s formula for the energy  spectrum, we can
also  determine  energy  radiated per  frequency   , per solid

angle   during the time the beam travels through the undula-
tor:

where    and    are position  and  velocity  of  the ith elec-
tron  obtained  from the describtion  of the self-consistent
motion of electrons.

In order to give a correct account of the conservation of energy,
energy loss  of each  electron due to its self field is  included
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into (3). Using Lienard formula for the radiated power from a
single electron we have:

3. NUMERICAL  RESULTS
The theoretical derivations presented in the previous section
have been implemented in a simulation code to obtain angular
and temporal  characteristics of the three dimensional radiation

fields emitted by a 35 MeV, 14 A, 70  subpico-   second fil-
amentary electron bunch propagating trough a 4.5 m  long, 1.5
cm period helical undulator. The undulator parameter  is

chosen to be 1.12. To the parameter set corresponding radiation
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wavelength is 3.5 . The code computes the time evolution
of the three dimensional field amplitude with no initial bunch-
ing and seed wave at start-up. For a typical run ,a flat-top pro-
file  electron beam is used. The simulation particles are
uniformly distributed along the electron pulse. The bunch ,
twenty radiation wavelength long , is much shorter  than the
slippage distance. To study effects of the shot noise in the elec-
tron phase , simulations with randomly spaced electrons are
carried out.
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Fig. 1 a-c. show phase versus exchanged energy of initially uniformly and randomly distributed monoenergetic electron
beam after traveling trough a 4.5 m long helical undulator. Plot 1.c is obtained from the numerical integration  of  (19) by
considering the 1/R dependent (ponderomotive force) term alone.In plot 1.a-b the influence of the “near-zone” fields  on
the longitudinal beam dynamics is included. In Plot 1.b the periodicity  of the potential wells is perturbed due to the initial
random distribution of the charge along the bunch length.

Figures 2. a-c  illustrate  the angular distribution of the radiated energy  by the ini-
tially randomly phased electron bunch. The angular distribution observed at a sur-
face far from the source  is divided into three different time domains; leading - and
trailing edge of the radiation pulse, figures 2a. ,2 c respectively, and the steady state
regime fig. 2b, where  is the observation angle.Due to the (partial) bunching of the
electron  beam at the end of the undulator, the coherent superposition of radiation
pulses  from all electrons in the beam produce, as a result of wave interference
effects a narrower cone of radiation than the radiation generated by  the electrons at
the entrance of the undulator.Dependent on the distribution of the electron phases,
by summing the amplitude of the fields radiated by individual electrons one can
obtain interferece patterns at the observer surface where constructive (destructive)
interference takes place for  certain observation  angles.Fig.2d. shows the angular
distribution of the radiated energy in the absence of  the  “near-zone” fields . Due to
the increased coherence in the resultant field, the angular radiation cone becomes
narrower than the ones shown in figures 2.a-c. 
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