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Abstract 
The Los Alamos Advanced Free-Electron Laser uses a 

high charge (greater than 1 nC), low-emittance (normalized 
rms emittance less than 57~ mm mrad), photoinjector-driven 
accelerator. The high brightness achieved is due, in large part, 
to the rapid acceleration of the electrons to relativistic 
velocities. As a result, the beam does not have time to 
thermalize its distribution, and its transverse profile is, in 
general, non-Gaussian. This, coupled with the very-high 
brightness, makes it difficult to measure the transverse 
emittance. Techniques used must be able to withstand the 
rigors of very-intense electron beams and not be reliant on 
Gaussian assumptions. Beam position monitors are ideal for 
this. They are not susceptible to beam damage, and it has 
been shown previously that they can be used to measure the 
transverse emittance of a beam with a Gaussian profile [l]. 
However, this Gaussian restriction is not necessary, and, in 
fact, a transverse emittance measurement using beam position 
monitors is independent of the beam’s distribution. 

I. INTRODUCTION 

The Advanced Free-Electron Laser (AFEL) is a compact, 
computer-controlled FEL that is intended as a coherent light 
source, tunable from the infrared to the visible. The 
accelerator is driven by a photoinjector and produces a high- 
brightness, 20-MeV beam. In order for it to achieve lasing in 
the visible regime, the AFEL relies heavily on beam quality, 
i.e., low emittance, and on the high peak currents that are 
obtainable with a photoinjector. 

Measuring the second-moment properties of electron 
beams from photoinjectors is not a trivial proposition [2]. At 
the present, the AFEL uses single-quadrupole scans on an 
intercepting screen to measure the emittance. However, 
simulations indicate that this method underestimates the rms 
emittance by a factor of about four. In fact, this method seems 
to measure the instantaneous emittance at the center of the 
beam [2]. While this number is more important to the 
performance of the laser, the rms quantity is more important 
for beam transport through the beamline. 

In this paper, we will discuss the possibility of using 
beam position monitors (BPMs) to measure the rms emittance 
of the AFEL electron beam. What we will show is that the 
numbers produced by this technique are independent of the 
beam distribution. Thus, the measurement gives true rms 
values whose meanings are clear. 

II. IMAGE CHARGE DISTRIBUTION 

Consider an electron beam pulse traveling down a beam 
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pipe. If, in its rest frame, this pulse has some distribution, 
I(&$, z), that is normalized to the total charge, qror, then the 
image charge distribution on the beam pipe is given by 

4b. z, f) = - m2 * Jw~.y(z’- ,a)) 
V 

@T Y, a, cos[ +I - 40] 
n=O m=l 

, 

where a is the radius of the beam pipe, p and y are the usual 
relativistic parameters, the J,s are Bessel functions, the X~S 
are Bessel function zeros, and the volume of integration is the 
volume that contains the electron pulse. As y becomes large, 
this simplifies to the expression, 

o($.z~=-& JJqpw,z-per) 
nrell of 
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where r’(p’, $‘, z - pet) is the pulse distribution in the lab 
frame, also normalized to q,,[3]. 

III. BPM SIGNAL 

A beam position monitor consists of four electrodes 
placed around the beam pipe at 90° intervals, as shown in Fig. 
1. They couple to the beam through the image charge, or wall 
current, produced on the beam pipe by the electron beam. 
Their signals can be expanded in powers of l/a. In general, 
the terms of this multipole expansion are dependent on the 
distribution of the electron beam. However, what we will 
show is that the terms important for measuring the emittance 
are distribution independent. 

For the case where the electrodes have no angular width 
and the electron beam distribution is Gaussian, the first four 
terms of the multipole expansion have previously been 
determined [l]. It is a simple matter to extend this result to 
the case of electrodes with angular width (Fig. l), which we 
have done. Table 1 gives the fast three terms of the multipole 
expansion in this case, normalized to qrol 127~. From these the 
quantity 0: - 0; can be determined, and that determination 
leads to a method of measuring the emittance [ 11. 
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Table 1: Multipole terms for Gaussian beam, normalized to qto,/ 27ra 

Electrode R=Right 
(o=o) 

L=Left 
(@=4 

T=Top B=Bottom 

Monopole 2a 2a 2a 2a 

Dipole 4sin ax -4sin ax 4sinaP -4sinaI 
a 

Quadrupole d -d 
2 sin 2a 

x’z -jT’ 
x+- 

a2 a’ 1 2sin2a 1 
I’(p’,$‘,z - pa) + Z’(x’ - x, y' - y.2, - zo). 

This substitution indicates that we are now writing the beam 
distribution in Cartesian coordinates with the beam’s center at 
(E, 7, b ) . Then we can use the expansion 

2a+4~(~~~,,[,(~-0’)]=2~ 
n=l 

Fig. 1: BPM electrode positions. +4 yx’cosO+ Y’SinQ) 

Now consider the case of a general beam distribution. A 
BPM at some position z. along our beam pipe has electrodes 
placed as shown in Fig. 1, with length 2Az. Then the image 
charge on an electrode at angular position, 0, is 

sin 2a 
+2 - 

a2 K 
x’~ - yr2)cos2$ + 2x’y’sin 2$] 

4 sin3a 
+-- 

3 a [( 
x’3 - 3x’y’2)cos3t$ + (3x’2y’- y+Il3i$] 

+higher order terms 

q(w) = -1 
++a to+& 

2~ Jd$ Jdz JJI’w.$‘,z -WI to convert the rest of the integral to Cartesian coordinates [31. 

hM)=-& 

20 +A.? 
Jdz JJ zypw,z - pet) 

The beam distribution is always zero outside the pipe; 
therefore, when integrating over x’ and y’, we can make the 
limits of integration -1-00 and --m. Then the peak image charge 
on a BPM electrode is 

to+-+-+- 

qpeam=-& J J Jqx-~.Y-Y,z-z~) 
~o-...-OD-OD 

L-A? mea of 
pipe - 

.(,a + 4fca. Fcos[n($ - +.,l)p.dp.dp.. 

The integration over z is complicated by two things: the 
beam bunch is moving, so that the integration depends on 2, 
and there is the possibility that the electrode length may be 
shorter than the beam pulse length. For simplicity, we will fix 
r so that the center of the charge, pet, corresponds to the center 
of the BPM, zo. This is the point at which the charge peaks. 

4 sin3a 
+5y[(x3 - 3xyz)cos3$ + (3x2y- y3)sin3$] 

+higher order terms dxdydz , 

Also, we will assume that the electrode length is large enough 
relative to the bunch length that we can take AZ-+. (For the where we have dropped the primes for convenience. Making 

AFEL, the electron pulses are about 3 mm long, so even l-cm- use of the following integrals: 

long electrodes are adequate for this assumption to be good.) 
The integration over p’ and $’ can be changed to an 

integration over x’ and y’. Since we have assumed no special 
distribution, it is perfectly acceptable to make the substitution 

zg+m+-+- 
J J JI’(x-x.y-s;,z-zo)drdydz=q,,, 

G?------ 
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zO+-+o+o- 

J J Jxl’(x-x,y-~,z-z~)drdyy~=q,,f, 
h-w---o) 
Lo+-+a,+- 

J J Jyl’(x-*.y-~,z-zo)drdyydz=q,,~, 
h------ 
zO+-+m+- 

J J Jx2r(x-Z,y-Y,z-z,)drdydz 
c3------ 

to +- +- +- 
= J J J[(r-zj2+2~-x2] 

ho------= 
@Z’(x-%y-jtz-z(Jdxdydz 

= ,,[((x - E))’ + 2x2 - x2] 

= qmr (0: + r2), (0, is the rms halfwidth in x) 
to+-+-+- 

J J J y2z’(x-x,y-y,z-zo)dulydz 
h----oa--m 

= q&J: + F2)Y 

qperlk (4)) becomes 

qpp.,($)=-E 2a+4~(?cos@+~sin$) 
i 

+25[(0: - 02,) - (2 - Y2)]cos2$ 

+2( “y ) sin 24) + +yq((x3) - 3(nzy))cos3+ 

+(3(x2y) - (y3))sin3$] +higher order terms . 

The angled brackets indicate an rms average. Substituting in 41 
= 0, IT/~, 7c, and 37d2, to get the peak charge for each electrode, 
one finds that the fist three terms in the multipole expansion 
are identical to those for the Gaussian beam in Table 1. 

IV. EMITTANCE MEASUREMENT 

Measuring emittance using BPMs is difficult. Most often, 
it is the lack of an adequate signal to noise ratio that is the 
main cause for concern. However, we have discovered a 
further problem that we believe is associated with the very- 
short beamline of the AFEL and the nature of the 
measurement. 

The matrix equation 0 = k. G,, where 

(4,); (WA), (Rn): -(Rn): +RJh), -tRd: 

(4,): (WJ,z)n (4,): -(‘h): -(%‘L), -(id:, 

is what we are setting up when we use BPMs to measure the 
emittance [I]. The elements of the vector 0 are the 
measurements, and the vector bt is what we wish to 
determine [l]. The R,s are the elements of the transfer matrix 
between the point where you want to know the emittance and 
the BPM that is making the measurement. 

On the AFEL, the distance from the end of the linac to the 
BPM that we wish to use for our emittance measurement is 
about 1.5 m, with four quads along the way. Our fitst 
inclination was to vary one of those quads to generate our 
measurements. However, the matrix produced by doing this 
proved to be highly unstable. It had a condition number of 
about 104, which means that any error in our measurements 
could be amplified by that factor when we solved our matrix 
equation. What we ended up having to do was use two or 
more quads in concert, so that our transfer matrix acted as a 
“filter.” By setting the quads to appropriate values, we can 

make all but one of the numbers in a A matrix row zero, or 
very small. This allows most of the terms in the vector ii, to 
dominate a number of measurements. As a result, we can 
reduce the condition number of k so that it is close to unity, 
which is as small as it can be. 

Why do poorly conditioned matrices arise? For the 
AFEL, with its short beamline, that situation is partly a 
resolution problem. Mostly, though, it comes from the fact 

that not all the elements in one row of the ti matrix are 
independent. A long beamline will help, but it is not 
necessarily the answer. One must be careful when making 
measurements. In general, it has been our experience that 
adjusting quads at random produces very poorly conditioned 
matrices, even when more than one quad is turned on at the 
same time. 

V. CONCLUSION 

A photoinjector-driven accelerator presents unique 
challenges for emittance measurements. By using BPMs for 
this purpose, we circumvent the need for knowledge of the 
actual distribution. However, in order for this technique to 
work, we still need to improve the signal to noise ratio of the 
BPMs, and this is a problem we have not yet addressed. 
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