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Abstract 
Numerical method for improving optical resolution in 

electron beam profile measurements with visible 
synchrotron radiation (SR) is proposed. Image formation of 
electron beam profile is described by integral convolution- 
type equation of the first kind - the diagnostic equation. 
Precise procedure of computing the equation kernel in terms 
of classical electrodynamics is presented. With this 
procedure special features of the SR emission and 
diffraction scheme peculiarities may be taken into account. 
Numerical regularized solution of the diagnostic equation is 
shown to lead to the resolution improvement. The technique 
is supposed to be beneficial in high-energy storage rings. 

I. INTRODUCTION 
Visible SR is much used as a tool for beam profile 

measurements in synchrotrons and storage rings [l] - [4]. 
Fig.1 shows traditional layout of the measurements. Also, 
an extracting mirror absorbing short-wavelength SR is 
optionally used. 

-&p/ -;. -__ $!L g+l:ilil’ 
Figure 1. Scheme of measurements. 

l- beamline; 2- focusing lens and limiting diaphragm: 3- neutral 
light filters; 4- monochromatic filter: 5-position-sensitive detector. 

Unfortunately, in high-energy electron storage rings the 
diffraction-limited spatial resolution may be comparable 
with transversal beam dimensions [3]. [4]. Beam profile 
image may also be distorted by aberrations, for example 
those resulting from thermal deformation of the extracting 
mirror. 

If one can precisely describe the formation of beam 
profile image, then one can improve the optical resolution 
mathematically, by numerical processing of the 
measurement results. In this paper a diagnostic equation 
describing the image formation is treated. Technique for 
precise computation of the equation kernel is proposed. 
Results of simulation illustrating the numerical solution of 
the diagnostic equation are exhibited. 

II. DIAGNOSTIC EQUATION 
Detector response is proportional to the intensity of 

incident radiation. The visible SR emitted by different 
electrons is known to be dominantly incoherent in electron 
storage rings, if longitudinal bunch length is larger than 
micrometers. The beam profile image formed by focusing 
lens is insensitive to angular divergences of the emitting 
beam. Let x and z to be transversal Cartesian coordinates in 
the object plane (i.e., in the plane the lens is focused on), 
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and n*, z* to be coordinates of a point in the detector 
screen. In line with the assumptions made, if n(x,z) is 
transversal distribution of particle density in the object 
plane, then the intensity distribution in the detector screen 
I(n*,z*) is related with n(n,z) as 
+-+-I 

II n(x,z)K(x,z,x*,Z’)~~z = r(x*,z*> , (1) 
--m--4) 
where K(x,z,n*,z*) is radiation intensity at observation point 
(x*,z*) in the detector screen, which results from passage of 
a single particle along trajectory intersecting the object 
plane at (x, z). 

Relations similar to (1) are commonly used in optics to 
describe image formation of extended incoherent source [5]. 
Function K(x,zJ*.z*), being known from physical 
consideration, and Z(x*,z*). being determined by the 
detector, allow to treat relation (1) as the integral equation 
of the first kind with respect to n&z) - the diagnostic 
equation. In practice Z(n*.z*) is averaged within detector 
exposure time, so n0.z) should be considered 
correspondingly. 

To define the kernel K(x,z,x*,z*), let us start from the 
Fourier transformation of electric field emitted by single 
electron in its motion along the trajectory 7( 7). the relation 
one can easily obtain from delayed potentials [6] for 
observation point EY?‘) in space before lens, 

I??, = irorvexp[im( rf R/c)]&, 
C --m 

(2) 

where p= (d?/dz) / c is relative velocity of electron, 

n’ = #fR, 1? = 7’ - 7, R =lal, w is radiation frequency, e is 
the charge of electron, c is the speed of light, i is unit 
imaginary number. Eq. (2) is valid at [cl(wR)]<<l. 
. Two wave disturbances corresponding to cr- and X- 

components of Z,, may be sufficiently considered in wave 
zone. For ultra-relativistic particle, the general contribution 
to the integral (2) takes place at I/3,l<<l; the radiation is 
directed mainly forward (In,lc<l, In,l<cl) [6], [7]. 
Therefore the cr- component wave disturbance may be given 
by the expression 

u, = c exp[io( r+ R/c)]dr, 
--m 

(3) 

where C is constant. Here and later on, the Z- component 
expression is not presented: it may be readily written by 
direct analogy. 

Eq. (3) may be regarded as superposition of disturbances 
from motionless coherent point sources arranged on the 
electron trajectory, each disturbance phase and magnitude 
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being defined by the position of corresponding hypothetical 
source. A diffraction integral (see [5]), which allows to 
calculate the source contribution to the total disturbance 
value at point P(T’) on the detector screen, can be written 
for each source. The total disturbance is given by the 
exnression 

exp ig( r) + t(S - R”+Y) [ , (4) 

where function g(r) describes individual initial phase of 
each source, the value adequate to the image space: R” is 
reference sphere radius (see Fig.2); S is distance between 
the observation point P* and point P’ in the reference 
sphere; Y is total wave aberration; C* is constant. The 
inner integration in Eq. (4) is on the reference sphere within 
lens diaphragm. 

deformation of extracting mirror), the uncoupling structure 
of Eq.(6) retains. 

The problem on optical resolution in beam profile 
measurements was discussed in [3], [4], where diffraction of 
synchrotron radiation and depth-of-field effect were 
considered separately. The method under discussion allows 
to treat these effects as single phenomena closely related 
with nature of synchrotron radiation. 

In the computations discussed below, the coefficients fo, 
f4 f4 f& fk were determined from exact geometrical 
relations. But it would be well to consider approximate 
values of the coefficients. It is obtainable, 

I f. c-E&~++&/3): fc ~-~~-~b%+)~ 
0 (7) 

f< z -F(z* - m,z); f{C e f;s = $4 n* r&c A=4 
0 

1 

3 where ob is cyclotron frequency, y is the reduced energy of 
electron (y >>l); m. is transversal optical magnification. 

em 1 

Figure 2. Diffraction scheme. 

By analogy with unfocused SR, the cubic term in f. may 
be shown to prevail at CLK<W, (4 =3yVq,/2 is critical SR 
frequency). Using the corresponding normalization in Eqs. 
(6). (7). one may see that if an acceptance angle is 
Im,lij << (uJ,/o)‘~, then the vertical diffraction is 

l- electron trajectory; 2- lens diaphragm plane; 3- detector plane; 
Fraunhofer’s one with the resolution of order C/(OI ~,IF), 

4- wave front; 5- reference sphere. whereas at I me I r > > (w, /w)I/~ the optical resolution has the 

If sufficiently narrow monochromatic filters are used, Order Of C/(@*W*)“‘. 
then the diagnostic equation kernel is defined as Eqs. (5) - (7) show that 

K(x,z,x’,z’) = Iu;12 +Iu$ (5) K(x,z,x*,Z*)z:X(~~*-m& z*-Qz), (8) 

The functions involved in Eq.(4) may by determined 
from the measurement geometry. Using angular variables of 
reference sphere integration, horizontal one c and vertical 
one 6, and applying the expansions of all the phase 
functions in Eq.(4) in terms of these small values, one can 
obtain for the radiation from bending magnet 

Vi = C**r@exp(& )I( n, - P, > exp(ifIt + if&zM5 x 
-m -2 

i 
x ew(ifJ+ ifcc5"K I (6) 

i.e., to certain accuracy Eq.(l) may be treated as a con- 
volution type integral equation. Numerical analysis shows 
the accuracy to be better than 1% for high-energy electron 
storage rings. Analytically the feature was studied in [8]. 

Relation (8) allows to apply effective methods based on 
the convolution theorem for the numerical solution of 
Eq.( 1). The regularized solution of Eq.( 1) may be written as 
follows [9], [lo]: 

1 
n,(x, z) = 2 

+““~(-w,,-~,)j(~,,~,)exp(-i~w, -iwru,) 

(2x) J J I*G-w,f 
dwxdw, t (9) 

-- +arM(w,,w,) 

-i 
where the azimuth 4 is used as angular integration variable where ?(w,,w,) and j(w,, 0,) are Fourier transforma- 

instead of r ; C** is constant. The phase expansion coef- tions of the kernel and the measured intensity; a is regu- 

ficients fo. ft. fs; ftt, fee depend on 4. larization parameter; function M( u, , w, ) suppresses high- 

Numerical estimations of high-order term contributions frequency component of the detector noise. The solution 

show that approximation (6) allows to compute the may be found by iteration as well as directly (if certain a 

diagnostic equation kernel with a precision of order 0.5%. priori information on its behavior is known). 

kccording to Eq.(6), variables c and LJ are uncoupled II. COMPUTATION RESULTS 
under the external integration on 4 if the limits 5 and r Computations of the diagnostic equation kernel for 

are constants: that essentially simplifies computation. Eq.(6) bending magnet radiation of 2.5 GeV electron storage ring 

was written in assumption of small lens aberrations. Siberia-2 were performed according to Eqs. (5) (6). The 

Nevertheless, even if a large 4 - independent aberration 
kernel 2Jx.z) computed for radiation wavelength. h=540nm, 

takes place (for instance, the aberration due to thermal 
bending radius ro=1960cm, distance from object plane to 
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lens L=7OOcm, the lens diaphragm widths &=2cm, d,=6cm; 
mO=-1, is shown in Fig.3. 

Figure 3. Diagnostic equation kernel. 

The computation accounts only for the o- component of 
SR. Secondary maxima inherent in Fraunhofer diffraction 
are recognizable in horizontal direction. Corresponding 
maxima are absent in vertical direction; the distribution is 
symmetric with respect to median plane. X(n.2) is sensitive 
to dJL. dJL, but with these values large enough the 
sensitivity eliminates; it correlates well with qualitative 
considerations given in previous chapter. 

0.2) 
x, mm 

I r 1 

Figure 4. Results of simulation ((a)- surfaces, (b)- level lines): 
l- n(x,z); 2- I(x,z) deviated by noise; 3- ndx,z). 

As an illustration to processing the data on beam profile 
measurements, Fig.4 gives the results of the corresponding 
simulation. The simulation was done according to the 

following traditional algorithm: a function n&z) modeling 
the transversal distribution of particle density was chosen; 
corresponding SR intensity distribution in the detector plane 
Z(r*,r*) was computed by Eqs. (l), (8); I(x*.z*) was 
distorted by random noise assuming the detector dynamic 
range to be 100; the solution of diagnostic equation, n&z) 
was found for the distorted intensity by Eq. (9) in 
accordance with regularization technique. 

The procedure of regularized solution of the diagnostic 
equation is equivalent to the use of hypothetical measure- 
ment system providing higher spatial resolution. Simulations 
show the possibility of increasing the spatial resolution in 
beam profile measurements about 1.5 - 2.5 times and even 
more (the value depends on detector dynamic range, applied 
regularization algorithm, as well as the solution behavior). 

III. SUMMARY 
Proposed technique is expected to be efficient when 

optical resolution in beam profile measurements is 
comparable with actual beam dimensions, as it takes place 
in high-energy storage rings. The method proposed for 
computation of the diagnostic equation kernel allows to take 
into account practically all main distortion sources in the 
measurements. The technique may be easily adapted to 
particular experimental conditions. 
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