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Abstract

A method to determine longitudinal pressure profiles in the
presence of pumps and outgassing elements in conductance
limited vacuum systems by a transfer matrix formalism is
discussed. The algorithm is capable of dealing with mul-
tiple connected vacuum systems. An implementation of
this method in the computer codes VAKTRAK and VAK-
LOOP is briefly described.

I. INTRODUCTION

The longitudinal pressure profile P(z) in a conduction lim-
ited vacuum system obeys the following linear differential
equation 1n the presence of pumps and outgassing ele-
ments [1]

—sP=—¢ (1)

where the symbols are explained in table 1. We stress that
the presented method is only applicable in the molecular
flow regime, where the mean free path of the molecules is
much larger than the dimensions of the pipes and manifolds
such that the viscosity of the gas is negligible.

Under the assumption that the specific conductance ¢,
the specific pumping speed s, and the specific outgassing
rate q are plecewise constant, equation 1 is an ordinary
differential equation with (piecewise) constant coefficients.
Thus it can be solved by the method of transfer matrices.!
The general transfer matrix can be easily found from the
sum of homogeneous and inhomogeneous solution of eq. 1,
namely

P(2) = C1e® + Coe™" + % (2)
with @ = y/s/c. Solving for initial conditions we obtain
a transfer matrix R for the pressure P and the gas flow
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Table 1: Definitions of symbols used.

Quantity | Units Explanation
P [Torr] pressure
Q [Torrl/s] gas flow
z [m] longitudinal position
¢ [ml/s] gpecific conductance
s [1/sm] linear pumping speed
q [Torrl/sm] | specific outgassing rate
S (1/s] integrated pump speed
L [m] element length

Q = —cdP/dz, assempled in a state vector (P, Q, 1) which
reads

Ri1 = cosh(/s/cl)
R __ Lsinh(y/s sinh(y/s/cL)
2 = ; Fm/cL
qL“ cosh(y/s/el) — 1
Rz =
¢ (s/c)L?
Ryy = —cv/s/csinh(y/s/cl) 3)
Roa = cosh(y/s/cL)
Rys = Lsmh(\/s/cL)
sfel
Rsz = 1 Rz =Rsz=0

From eq. 3 we can now deduce special cases for elements
which do only outgassing or pumping. A piece of heam line
which neither pumps or cutgasses is given by eq. 3 in the
limit ¢ — 0 and s — 0. A long pump is given by ¢ — 0. A
very short pump can be described by eq. 3 with L — 0 but
constant integrated pump strength S = sL. The transfer
matrix of a long outgassing element, is given by eq. 3 in the
limit of s — 0.

Given the transfer matrices it is possible to track a given
pressure profile through a vacwwm latiice if the initial val-
ues Py and Q¢ are knowu. Another option is to find the
initial values under the assnmption of periodicity, i.e., if

one considers a seauence of eaual vacuuwm cells. Given a
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Figure 1: Longitudinal Pressure Profile

cumulative transfer matrix M through a vacuwm structure
M v

1‘{:(0 1)Y

where M;; = M,‘j fori,j=12and v, = M;s for i = 1,2,

(4)

the periodic solution Py 1s given by

Po=(1-M)"'7, (5)
where ﬁo stands for the vector (FPy, Qo).

Observe that a transfer matrix represents two equations
that relate two components of the input vector Py to two
components of the vector at the end of the vacuum beam
line. By specifying two of the four values the system can
be solved for the other two. In this way more general
boundary conditions can be taken into account.

As an example consider a synchrotron radiation beam
line. At one end it is linked to the storage ring which can
be assumed to be held at constant pressure and at the
other end it is closed off, such that the gas flow is zero. If
the vacuum components in the beam line are specified the
system can be solved for the incoming gas flow from the
storage ring and the pressure at the closed off end.

II. VAKTRAK

The code VAKTRAK contains an implementation of the
matrices given by eq. 3. It first reads an input file that
contains the sequence of elements and their correspond-
ing properties like length, conductance, pump speed and
outgassing rate and constructs the transfer matrices. The
code then prompts for the boundary conditions and con-
tinues to calculate the pressure profile and the gas flow.
Finally it writes a TOPDRAW [3] file that displays the
vacuum lattice, the pressure profile, and the gas flow as
shown in fig. 1. The details of operating VAKTRAK are
explained in ref. 4.
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One has to keep in mind that this method is numeri-
cally touchy and the calculation of the solution for very
long vacuum lattices is numerically unstable, so the user
must be careful in interpreting the output. This problem
is alleviated as far as possible by using REAL#*16 variables
in internal calculations. It should be noted that this proh-
lem mainly arises in systems with large pumps and small
conductance, i.e. systems, which are physically not well
designed.

The beam-gas scattering lifetime in a storage ring is de-
termined by the average of the pressure and the beta fuunc-
tion over the circumference of the ring [5]. VAKTRAK
provides the option to specify a magnet lattice in TRANS-
PORT style input [6]. This file is read and the periodic
solution for the beta functions is determined. Then the av-
erages of 3, P, and P are calculated and displayed. Using
this routine it is easy to optimize the placement of pumps
in a vacuum system, and taking the detailed hehavior of
the beta functions into account.

MULTIPLE CONNECTED
VACUUM SYSTEMS

ITI.

So far we are dealing with single segments of beam line.
Using periodic boundary conditions is equivalent to either
an infinite array of such segments or a circular segment. In
order to take more complex geometries into account such
as pump manifolds connected to beam pipes at various
locations, we have to generalize the concept of periodic
boundary conditions.

This generalization is based on Kirchhoff-like rules for
vacuum systems [7,8]. They are based on the observation
that in vacuum systems the pressure plays the same role
as the voltage in electric circuits and the gas flow behaves
analogously to the current. Using these observations we
can state two rules:

1. the sum of gas flows into a node is zero,

2. the sum of pressure differences around a closed loop
is zero.

These rules now take the place of periodic boundary con-
ditions.

A further complication arises from the number of un-
knowns we have to solve for. For our purposes we choose
the pressure at each of the n nodes and the gas flows info
and out of a link. In this way we have to deal with n 4 2/
unknowns, where ! is the number of links. Now we have to
find the same number of relations among the unknowns in
order to find the systems’ equilibrium configuration.

The first of the above rules relates the fluxes flowing into
and out of each node, thus yieldiug n equations among the
unknowns. The second rule allows us to use the transfer
matrices for each of the links j to relate the pressure at
the starting node of a link P, and the gas flow into that
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link Q,; to the pressure of the ending node of link P, and
the gas flow out of the link Q.; according to
) ©

()= o) (s )+ (i
er v.]z
In this way we obtain 2! more equations for a total of n+2{
linear equations among the pressures at the nodes and gas
flows into and out of the links. The solution of this system
is a simply accomplished by any routine that solves lin-
ear equations, e.g., those using a Gauss-Jordan algorithm.

One should, however, pay attention to numerical instabili-
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ties, because the transfer matrix elements can become very
large. The cure is to use the highest available precision on
the computer implementation.

The described algorithm is implemented in the code
VAKLOOP, which reads an input file that contains the
segments (links) element by element just as VAKTRAK
does with the exception that the segments are separated by
mput lines that specify the starting and ending node of the
following segment. VAKLOOP then calculates the transfer
matrices for each segment and sets up the linear equations
as described 1n the previous section and solves them. Fur-
thermore the code generates plots like those shown in fig. 1
for each of the segments. After the calculation is done a
few consistency checks are performed (also needed for ac-
curacy) to test whether the solution actually solves the
linear system.

IV. CONCLUSIONS

We presented a method to calculate longitudinal pressure
profiles in very general conduction limited vacuum net-
works. The method is implemented in computer codes
which allow fast and simple evaluation of the pressure in
such systemns.

This method is closely related to a matrix formalism
treating charged particle beams in magnetic systems. The
pressure takes the role of the transverse position z and the
gas flow that of the angle z’. Some of the transfer matrices
discussed in the second section of this note can be directly
identified with magnetic elements. Pressing this analogy
a little further we can identify vacuum gauges with beam
position monitors. It needs to be investigated in the future
whether this can be used to determine the position of leaks
In vacuum systems.

In this note the pumps are assumed to be linear (S =
QQ/P). However, this restriction can easily overcome. The
equations in this case will become weakly nonlinear, but
can still be solved iteratively [2].

Furthermore, the codes currently deal with one gas at a
time and the pressures are partial pressures for that gas. It
1s easy, at the expense of a lot of bookkeeping, to improve
the codes to allow to deal with different pressures at the
same time.
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