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Abstract 

The transverse and longitudinal coupling impedances of 
axial symmetric geomet,ries with an arbitrary number of 
cross se&on jumps are calculated. Field matching with 
renormalized wave amplitudes is applied at planes .z = 2,. 
The resulting linear equations are solved straightforward, 
leading to good numerical stability. The Dirac-like pulses 
of the impedances below cut-off or of structures with 
trapped modes are avoided using a complex permit,tiv- 
ity. Numerical results are presented for a sample detuned 
structure wit,h more than 400 different radii. 

I. Introduction 
The structure under consideration is a beam pipe with 

an arbitrary number of different cross section jumps. Par- 
allel to the axis a charge Q travels with a constant velocity 
21 = cJ’,pc. This charge excites a field that is scattered by 
the inhomogeneous boundary. The scattered field acts on 
a test charge following behind the exciting charge. 

In this paper, the Fourier transformed field is expanded 
in orthogonal functions, each a solution of Maxwells equa- 
tions. The continuity and boundary conditious at the 
planes of the cross section jumps are fulfilled by mode 
matching. The mode matching is applied at all cross sec- 
tion jumps simultaneously, leading to a single linear system 
of equations. The effect of the scattered field is expressed 
in terms of coupling impedances. 

In previous studies[2]..[5], similar problems were exam- 
ined. In [2] no azimuthal dependence was allowed. In [3] 
the azimuthal dependence m = 1 was considered, but with 
other expansion functions. In [4] a similar problem with 
azimuthal dependence, but without a current was calcu- 
lated using scattering matrices. In [5] an even more gen- 
eral problem is considered, where there are jumps also in 
the p-direction and with TEM-waves in coaxial segments. 
Their calculation also uses scattering matrices. 

II. Geometry 
Consider an infinitely long beam pipe 

with N cross section jumps. The jumps 
lie in the planes z=tn, n=O..N-1. The -l-u-U- 
charge travels at a distance p=pq off 
axis, at the azimuthal angle (o=O. nn n 
Inside the cylinder p = pq is the area AA’), outside the area 

AL’). Left of the plane z, is the area At’ with radius T,, 
right of it the area Atil with radius r,+l. 
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III. The excitation 
The moving charge represents a current density 

y[Am-‘1. 

+cO 

f(t) = v’e = e’, 
J 

J(w)e t&t dw _. 

--co 
i-m 

e, -J ’ 
Q,-jkz/p S(P - Pe) cu cos(7wo) 

p z. s(l+ 50 ),+jwr dw m -cm 

In the following only the Fourier transformed entities and 
only the mth component of t,he Fourier series are consid- 
ered. 

IV. Field representation 
The tangential fields in the nth area A,, at the plane 

z = r, are represented by 

pL,e’, x H*, = 

J% -= 
-jw 

FTM - n3 - 

$7-13 - ns - 
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P TX - ns - 

k2@TM zTM 
no ns 

+ iTz x iT,Ms’i’(zn) 
co 

CL 

FTM 
ns ; z,‘f” + FzsEz;F 1 -t SZl *=tn 

+ -$~~Msqz*) 

G-$ Jm(jm,s~lm) cos(mio) + 

+G; Jm(j,.,;.ph)$ cos(mp) 

~pjJm(iL,sPI~n)$ sin(mv) - 

+$ Jm(&sd~n) sin(mcp) 

TX E {TM, TE} 
CTXei-.jq~~(~-zn-~) + pTe-hT.X(z-zn) 

ns 

4 W2Wn - P:,x2 

P 
TM-j- 
ns - 2; plff = %; Jm(jm,+) = Jk(jk,,) = 0 

rn 

The exponential factors are chosen to be one at the planes 
z = Z, and in magnitude less or equal one in the areas A,. 
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The source fields are represent,ed by: 

e’, x jj;bfs’i’(zn) = k2E-Jkd? x 

e’ b)(p)cos(mp) + i&‘(p)~ 
‘dp n pn dv 

cos(v) 

-...I!-~/~~~)(~,) = [$e-j*,iB] x 

-jw ZZZ" 

e’ AR(‘)(p) cos(mcp) + E$R, (p)d 
‘dp n P (‘I dv 

cos(vo) 

(abbreviations: 7 = l/d-; Cq = y; Cn = y): 

pk R”‘(p) = A’l’Jm(-) 72 n 
7 

RL2)(p) = A~%,+ + &2b,,& 

The amplitudes A, B of the source fields are given trough 

V. Mode Matching 

At the common boundary of two areas A,,, An+l, the 
tangential fields have to be continuous. At the metallic 
walls the tangential E-field must vanish: 
r, = min(r,, r,+r); rg = maxjr,, r,+r) 

fftn(%) = fJt,n+l(h); O<pSr, 

&(&a) = -G,n+1(4; Olplrs 

&(%n) = 0 rs L P 2 rg 

Expansion of the continuity- and boundary conditions on 
the tangential components yields a linear system of equa- 
tions for the unknown C,T,“, Df: : 

i E {l . ..oo}. TX E {TM, TE} 

r, = min(r,, r,+l); rg = max(r,, r,+l); 

1 2n f. 
- 

JJ 
[& x &,]i$x p dp dp = 

Pn 0 0 

1 2s r* 

-J J 
[Zz x &n+~]~s-~ P dP dv 

Pn+l 0 0 

2T r, 2* rn+1 

JJ &i$x p dp dp = JJ &,,,,~;x p dp dq 0 0 0 0 
The occurring integrals J J FsxFry pdpdp can be eval- 
uated in closed form. Sorting the equations yields a linear 
system for the unknown CT’,“, Dcsx: 

LCi;’ LDI;’ RC; RD: 
LC: LD: RC: RD: ) [ s:..‘i = (2) 

\ fin+1 / 

The matrices LC:, LD: come from the expansion of the 
source free H-field in the nth area at the plane z = t, 
(left of it), the matrices RCF, RD: from the source free 
field in the (n + l)th area (right of 2,). Similar are 
LCE, LD:, RC:, RD: matrices containing the coupling 
integrals for the source free E-field. The vectors en, d, 
contain the unknown amplitudes of the waves t_avell$g 
forward or backward respectively. The vectors HS,, ES,, 
contain the expansion integrals of the source fields. 

There are N such equations for the N cross section 
jumps. The submatrices are of order infinity, so are the 
column vectors. After truncation of the submatrices to a 
size M, all equations together constitute N x 2M equations 
for the (N + 1) x 2M unknown CTax, DTX. The Cgx of 
the leftmost area A0 have to be zero, L they represent 
waves coming from a nonexistent source at z = --00. A 
similar argument holds for the 0::. Half of the submatri- 
ces are diagonal due to the orthogonality of the expansion 
functions. The equations can be swapped to a structure 
as (\ means a diagonal matrix, X means a dense matrix) 

xx 1 
1, \ 

x x 
22, \ 

x x 
kl;, \ 

xx 
Irx, \ 

X 
1 1 \ / 

This linear system can be transformed by scaling to a 
very well conditioned one with the diagonal elements being 
unity and the off-diagonal elements all less then unity. 

VI. Coupling Impedances 
A test charge QP travelling behind the exciting charge at 

an azimuthal angle ++ experiences a force by the scattered 
field. This force changes the impulse of the test charge. 
Under the assumption, that the velocity of both the excit- 
ing charge and the test charge is near the velocity of light, 
the change in the impulse will not change the velocity but 
the mass. The integrated impulse deviation (the kick) of 
the test charge travelling with the same velocity as the ex- 
citing charge at a distance AZ = TV behind is a function 
of this time 7. 

+CO 
G(T) [V] = --& 

D J &(miT) dl 

-co 
+m 

1 
= -- 

c?Qp Jr Qp~WL f) + Qp v’ x &s’(t), t)] d2 

-02 

The Fourier transform of the kick is proportional to the 
longitudinal- and transverse coupling impedances. 

1 
ZLIViA1 = W’(W)Q(pc,ro)m(p~/To)m COS(mlpp) 
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- yE,(p,, pp, L, W)e+Jkzlfl dz 

= &;YpqlrO)“‘(pplrO)” CO~VJ~) 

ZTIV’A1 = ~~p(W)Q(p~,ro)m(~~,~~)m-l cos(mpp) 

- +r [EP(PPl Ppr z,w)-~pB,(p,,cp,,z,w)]e+j~ZIPdz 
-co ZZ 

The factors are chosen to make the Fourier transforms 
impedances and to make the impedances in the ultrarela- 
tivistic case independent of the radii /7p and pq. 

VII. Numerical results 

In [l] a design algorithm for a detuned accelerator is 
proposed. This procedure was used to generate the geo- 
metry data of a detuned accelerator with 204 cells. The 
cells are designed to have the same resonance frequency 
for the monopole mode (m = 0) and a Gaussian frequency 
distribution for the dipole resonances (7n = 1) with a mean 
of 15,39 GHz and a variance of 0,39 GHz. This expected 
resonance density is shown in Fig. 3. The iris radii vary 
from 0,39cm < a, 5 0,54cm, the caviti radii are between 
1,05cm < b, < 1, 12cm. The iris thickness and gap width 
are held constant at t = 0,146cm and g = 0,729cm. In [2] 
the longitudinal impedance (m = 0) of the same geometry 
was computed. They had designed coupling cavities at the 
left and right of the structure. These coupling cavities also 
were used here. 

The resulting structure has 413 cross section jumps. The 
calculation was performed with 10 TM and 10 TE modes 
per area, thus, the order of the linear system was 2 x 20 x 
413. The normalization radius was rc=lcm. 

The structure has trapped modes. The impedance at 
their resonances has a characteristic like Dirac pulses. This 
behaviour is circumvented by using a complex permittivity 
E,. = l+j10m4. The impedance gets a Gaussian shape. The 
resulting transverse impedance (m=l) is shown in Fig. 2. 
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Figure 1: a) The left coupler and the first 18 cells of the 
detuned structure; b) The last 18 cells and the right cou- 
pler. 
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Figure 2: Transverse impedance in the detuned structure 
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Figure 3: Expected locations of the 204 dipol resonances 
in the detuned structure 
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