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.4 bstract 
In this paper we report a simplified model, where col- 

lective beam-beam oscillations can be described by a dif- 
ferential equation similar to the Schrodinger equation in 
quantum mechanics. In this case, the stability criteria can 
be obtained inspecting the behaviour of effective potential 
well curves. 

I. INTRODUCTION 

It is well known, that a study of collective beam-beam 
instabilities typically demands a solution of a very compli- 
cated system of integral equations. Usually, if we neglect a 
nonlinearity of the beam-beam kicks, produced by the sta.- 
tionary motion of the collidin, u bunches, these equations 
predict (see, for instance, [I]) a resonance instability of 
the betatron coherent oscillations with increments of the 
order of wo<, where wg is the revolution frequency, and [ 
beam-beam strength parameter. Since such an initial as- 
sumption eliminates Landau da.mping of unst,able modes, 
we may expect that such models overestimate the strengt,h 
of the collective beam-beam instability. 

Here, 27rRo is the perimeter of the orbit and p is the 
momentum of the particle, AvZ(JZ) is the incoherent 
beam-beam tune shift. Near an isolated resonance (vZ + 

AG(J,) = / ) 1’ n m a mearized system of Vlasov’s equations 
written for the horizontal coherent betatron oscillations 
(f’lA = f. + 6f(ll2), f. > 16f(lJ)l) 

6fyJ,, ?+!f,, 7) = c fg:yJJeim=+=-ivT (3) 
m,fO 

yields the following system of integral equations [l] 

cu f(V) = m,E fllr u-mm,A s du’u’F;(u’)G(u, u’)X~*‘)(u’). (4) 

0 

Here we briefly report a model, which enables the eval- 
uat,ion of the effect of the Landau damping on the collec- 
tive bearn-beam modes. More detailed calculations can be 
found in [2]. For the sake of simplicit,y, we a.ssume one in- 
teraction point (IP), identical colliding bunches and zero 
dispersion function at the IP. 

Here, u2 = Jr/c, < = Ne”/(2xpcf)l XL,““’ = fgJ”‘+ fF:i, 
FA = dFo/d(u2/2), A = Y, + Av,(JZ) - n/m and 

G(eh, 71’) = 
m dk 

s 
_J,,,~(~zL)J,,LI(~u’), 

-rn IL’ 
(5) 

where Jm(x) is the Bessel function. The calculation of the 
integral in Eq.(5) results in [3] (m = Im,l) II. SHORT BUNCHES 

The description of Landau damping of the collective 
beam-beam modes can be simplified within the framework 
of the model described in [l]. Namely, we calculate the 
eigenmodes of the horizontal coherent oscillations, assum- 

region (IR) are given by 

I = ~cos~,, Ro(pr/p) = dx/dr = I’, 
T = wot, $,: = u, + Auz(Jz). (2) 

(d”‘jrn 3 u 2 Ii’ ! 
(u’/u)m, u > u’ . 

As can be seen, Eq.(4) separates the so-called A- and o- 
ing that, colliding bunches have very flat unperturbed dis- modes (the sign (-) corresponds to x-mode) 
tribut,ion functions in amplitudes of beta.tron oscilla.tions 

Xf =r: xg)&xg), 

fo(Jz, Jt) = NS(J,)Fo(J1,)/(. (1) 
which satisfy independent equations 

If F. is a. Gaussian distribut,ion, E has the sense of the 
bunch horizontal emittance, IV is the number of pa.rticles 
in the bunch. We consider, first,, the case when the lengths X 

k-*1 cc 

of colliding bunches us << /?:, where /?I is the value of the 

- ; 
s 

du’u’V(u’)G(u, u/)x* > 

0 

horizontal /?-function at the IP. Then, the incoherent hori- 
zontal bet,atron oscillations of a particle in the interact,ion where 

‘On leave of absence from Budker Institute of Nuclea Plqysics, 
630090 Novosibirsk, Russia. 

V(u) = XA(u) 
(u//wI)~ - A2(71) d(;2) ’ Irnv ’ ” 

(7) 

(8) 

(9) 
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The substitution x* = wk/,/ii and subsequent double dif- 
ferentiation of Eq.(8) over u transform it into the following 
differential equation: 

w; + dI2V(u) - 
[ 

m2 - l/4 
u2 1 Wf = 0. (10) 

Eq.( 10) can be used to study stability of various stationary 
distributions Fs. For instance, for a water-bag distribution 
function when 0’s/& = -26(u - 1) and (As = vI - n/m) 

A(u) = A\0 + <' 
1, u< 1, Ne2 
I,lL, u ; 1 , t' = *> (11) 

Eq.( 10) results in 

71~*(71) = 
u1/2+m u<l, I= 
72/+ 71 ; 1 , 

~WAlm 
(U/TJI)~ - A2’ (I’) 

These equat,ions predict, unstable coherent oscillations 
within the stophands \A F <‘/ml < <‘/m with the max- 
imum increments (Imv = <‘) independent, of the mode 
number IJI,. Note, that in these equa.tions A is calculat,ed 
at u = 1. This fact causes general shifts of the centers of 
the stopbands when {’ increases. 

For a more realistic Gaussian distribution when 

dFo 
t1(11?/2) = -e 

-u2/2 , A = Ao + XP - exp(-u”P)l 
212 1 

Eq.(lO) cannot be solved direct,ly. However, in the case of 
unstable oscillations (Rev = 0), general properties of eigen- 
functions and spectra can he predicted using the analogy 
of Eq.( 10) and the Schrijdinger equation, which is written 
for a part,icle with zero energy moving in effective potential 
well 

- l/4 UeJf(U) = m2 1,2 F 2i’(u). (13) 

Since lJef,(~l) is a real function and, therefore, t.he oper- 
at.or in Eq.( 10) is a self-adjoined one, Eq.(lO) can have 
non-trivial solutions, if a potential curve (lJe,f(~l)) has a 
negative minimum (dU,f~(us)/dz~ = 0, I/,~J(u~) < 0) be- 
tween the stop-point,s (U,f.f(nr,z) = 0, 1~~ < UQ < u2). 
As seen from Eqs(9) and (13) for r-modes U,f,f can be 
negative, if A, < 0: and for o-modes, if Ac > 0. This de- 
termines a usual location of the stopbans of s- and o-modes 
relative to the point A0 = 0. Stability of coherent oscil- 
lations can be studied inspecting the behaviour of U,JJ. 
For example, Fig.1 shows the possibility for unstable so- 
lutions with increments of 0.7< for dipole oscillations at 
least within the stopband -2 _< ilo 5 -1. Fig.2 shows 
an increase in the depth of UJFj, for dipole oscillations if 
Imv decreases. This figure also shows that slow modes 
(Imv << <) can penetra.te in the core of the bunch which, 
generally, may cause stronger perturbations of incoherent 
oscillations. Fig.3 illustrates the possibility for unstable 
sextupole modes with increments of O.OSt within the stop- 
band -0.8 < Ac 5 -0.7. Figsl-3 indicate that Landau 

Figure 1: tJCff vs U; m = 1, v = 0.7if, from top to bottom: 
Ac/[ = -0.5, -1, -2, -1.5. 

-zt 
Figure 2: U,ff vs 21; m = 1, An = -<, from bottom to 
top: u/i< = 0.25,0.5,0.75. 

Figure 3: G’,J~ vs u; m = 3, v = O.OSi<, from top to 
bottom (at u = 1.G): As/t = -0.85, -0.8, -0.75, -0.7. 
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damping due to a non-linearity of the beam-beam kick does 
not st,abilize at least the dipole, quadrupole and sextupole 
beam-beam modes of short bunches [2]. This result was 
recently confirmed f4] by the numerical solution of Eqs(4). 

III. LONG BUNCHES 

As was shown in [5] the collective beatn-beam insta- 
bility of long bunches (in our model, 6, 21 ,Q) can be 
strongly suppressed by the so-called phase-averaging effect 
[6]. This suppression occurs due to strong modulation of 
t,he P-function and of the phase of betatron oscillations in 
IR: 

22 = j/mmwk(4 

B(r) = )!?; + y, G,,(T) = arctan(s/pz). (14) 

3: 

For coherent oscillations the effect of the bunch lengt,h is 
described by a simple redefinition of the bea.m-beam pa- 
raliiet#er [S] 

For t,his reason, for long bunches Eq.(S) takes the form: 

Y(u) = 
2[YmA(lL) 00 

(Y/TJI)~ - Aa d(,(i2/2) ’ *nlv > ” (16) 

The suppressing factors (Y,,]) in Eqs( 15) and (16) depend 
on t,he ratio of ,0* to 0: and on t#he mode-number (777). As 

a11 illustration. we can assume, for instance, /?* = 9: when 

E:,, = 7 !$-u? (Ape)‘” 
-cs 

I“igs.4 a.nd 5 show that, in the region u, 2 pz, the phase- 

Figure 4: Dependence of Y’,,, on t,he bunch length; 7~2 = 1. 

Figure 5: Dependence of Ym on the bunch length; m = 3. 

for rather short bunches. As seen in Fig.5, the strength of 
the sextupole resonance decreases twice when u, 2: 0.25&. 
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averaging effect roughly twice decreases the value of V(U) 
for dipole modes and, pra.ctically, eliminates the instabil- 
ity of the sextupole modes. Note, that the dependence of 
I;,, on the bunch length for the sextupole (as well as for 
higher modes [5]) is rather sharp. This means that a. sup- 
pression of the higher-order coherent resonances ca.n occur 
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