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Abstract 
Typically the study of the collective stability of a bunch 

with the strong coupling of the synchrotron modes de- 
mands the solution of the infinite set of integral equations. 
The paper reports two cases, when these mode-coupling 
equation can be solved directly for synchrobetatron and 
for synchrotron collective modes. 

I. INTRODUCTION 

It is well known that in many cases the possibility of 
increasing the beam current in a storage ring is limited by 
coherent interaction of the beam bunches with their en- 
vironment. In the case of a single-turn interaction, when 
t,hc bunch wakes decay fast,er t#ha.n t,he revolut,ion period 
in the ring, the specific features of coherent insta.bilities 
significantly depend on the rat,io of the bunch coherent 
frequency shift s1,, to the frequency of synchrotron oscil- 
lat,ions of particles in this bunch w,. If this rat,io is high, 
the calculat,ion of the increments of coherent modes and 
st#ability criteria demands the solution of a system of inte- 
gral equations. which generally couple t,lie harmonics of the 
bunch distribution function over the phases of synchrot,ron 
oscillations (see, for instance in [1,2]). The solvable exam- 
ples of such problems except for their heuristic worth can 
be used to test the codes, designed for numerical study 
mode-coupling problems. 

Here we report a simple model, when these equat,ions can 
be solved directly for the synchrobetatron and synchrotron 
modes. However, the result,ing dispersion equat.ions are 
very complicated and, except for the case of a weak mode- 
coupling. still require a numerical solution. 

II. SYNCHROBETATRON OSCILLATIONS 

MJe describe the unperturbed vertical bet,atron and sy~l- 
chrotron oscillations of a particle near the closed orbit by 
usual formulae: 

-7 = a,cosl),, B = w, t + $3, ps = $5 cos iI, ~ 

+ = -w,p, sin $, , $lz = J, = w()v,, 
L:v, 9 (1) 

lj, = wou,, I, = &l$il;, I, = - - 
0 2qcP 

Here. Il = 27rR0 is the perimeter of the orbit, (C E PC) 
is the energy of a particle. MFe neglect La.ndau damping 
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due to the nonlinearity of the particle synchrotron oscilla- 
tions and we do the calculations for the case of the dipole 
betatron coherent oscillations, which are described by the 
expansion of the distribution function (fo = Fo(l,)p(p)) 

f = fo + l/G@~ 2 y”,(p)P’+wt + C.C. (2) 

Then, for a single-turn interaction the amplitudes xm sat- 
isfy the system of integral equations (w = fw, + Au,) 

PI 
c-0 

(Awn - 
--cc 

co 

x(n.1 = 5 / 4vJnb(v)h(P). 

(3) 

nl,=-cx J 0 

Here, t,he bunch wa.ke is described by t,he value R,,,,,, giv- 
ing the coherent frequency shift of the coasting beam. 
Eqs(3) can be solved exactly for the simplified model, 
where (Q,,, = m,L?, 771, = fl) 

P(V) = +A - P”)> Q,l,,i = T(p;n;nA). (4) 

III the region lAi~,,j << w, the quantity R defines the co- 
herent frequency shift of the betatron mode (m, = 0). Ac- 
cording to Eqs(3) a.nd (4) we write xm(p) = C,~(P:-$), 
which replaces Eqs(3) by an equivalent system of the alge- 
braic equations 

(A+ - ?72,W,)C, = ? 2 Qm,n~Gn~> 
ll2;=-,22 

--iT, In =m’=O s ) (5) 

Q tn,m = 
i 

++br --::“I’, ’ 
x 

tn, , in: # 0 . 

Using z = AJ,,,/w,, w = Qtr2/~,, we rewrite Eqs(5) in the 
following form ( W = 4211/~~) 

(x - w)Co = ipg %+1 c+ = 2iWxS- 

k=O(21i+1)2’ 2p x3-4p2’ (G) 

c,+t, = 2iwx 

[ 

co 
x2 - (2k + 1)2 (2L + 1)2 + s+ . 1 (7) 
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Here, 

s+ =g c2’p 
p=l (21; + 1)2 - 4p2 ’ 

s- = 
E(2k+“a:l4p2’ 

(8) 

c,+k = C2k i- C-2k, c;&+l = C2k+l - C.-(2ktl). 

Substituting C& from Eqs(6) into Eq.(7), we obtain 

c,,, = 
2iwx CO 

x2 - (2k + 1)” (2k + 1)2 [ . 
+ Fsk,kic,,+l , 

k,=O 1 sI;>kl = 
z [x2 - 4p2][(2k + 1):l:;2][(2k’ + 1)2 - 4p”] 

(9) 
The calculation of the sum over p ill sk,kI ITSlIltS ill: 

.t?k,k’ = - 
1 

2X2(2k + 1)2(2k’ + 1y+ 
7r cot(?r2/2) 

G [x” - (2k + 1)$X” _: (2P + 1)2] 

Using this expression, we find 

‘i-k+, = - 

2W’ 211 
(2k + 1)2[9 - (2k + 1)2] L-Lx 

m c2-+1 

k,=O(2k’+ 1)2 - IV [X” - (2k + I)‘]” s-. c 
2 7r.r cot( x2/2) 

The solutions of Eqs(l0) read: 

c,+, = ,4(x)/(2k + 1)2 

x2 - (2k + 1)2 + [x2 _ ;;I 1)2]? 

(10) 

(11) 

The substitution of C,+, from Eq.( 11) in Eq.( 10) yields 
t,he dispersion equation 

2 
1 - - = 2lVFi(X) - 

2W”Lq(X)K2 cot(xx/2) 

(1’2) w 1 + w27rx cOtj(Tx/2)F~(x)’ 

where 

Fl(Z) = 2 ,=,(2k + l)‘[s’l- (2k + l)“]’ 

F2(x) = 5 
1 

,=,(2k + 1)2[0” - (2/z + 1)3]2 ’ (13) 

F3(x) = fy k=o[x” - (2: + 1)“]3’ 

III. SYNCHROTRON OSCILLATIONS 

Similar model can be used to describe the mode-coupling 
instability of the coherent synchrotron oscillations, if we 
take as p(p) the so-called water-bag distribution 

P(9) 0: 1 
1, ‘pl’po > 
0, P>cpo 

and the longitudinal wake from a pure resistive impedance, 
which does not depend on n. With these assumptions the 
synchrotron collective modes are defined by the system of 
equations, which can be written in the form, similar to 
that of Eqs(3) 

(x - nIs)xm = im,wqp2 - $7;) 
--m 

or, after the substitution xrn = C,ci(cp - cpc), 

(x - m,)C, = imSw 
O” dnJ,, (n>J,;(n) 5 J C,) 

n + m,u,po + iA’ (15) 
s --oo 

Since typically v,cpe << 1, we can expand the integrand in 
Eq.(15) in the power series of m,Y,vO. Taking into account 
in Eq.(15) the first two terms of this expansion, we obtain 

(x - nz,)C, = im,wx Q,,,~C~l- 

The second term in this equation couples the modes with 
t,he same parity. In the region ]w] << 1, when the mode- 
coupling is negligible small, this term gives a leading con- 
t,ribution in the decrements (or increments) of the syn- 
chrotron modes 

- Imc = S/w, 21 WY,(PO. (17) 

The oscillations will be unstable, when w < 0. 
On the contrary, in the region ]zu] - 1, the leading con- 

tribution in the r.h.s. of Eq.(16) gives the first term, while 
the second describes small perturbations. Neglecting in 
this equation the values, proportional to V,~O < 1 and us- 
ing the definitions from Eq.(8), we rewrite Eq.(16) in the 
following form 

c+ = 8Wp2S+ c- 2Wx(2k + 1)S- 
2P x2 4p” 1 2k+l = x2 (2k 1)2 . - - + (18) 

Substituting here the first equation into the second, we 
find 

‘,-,,I = 

4xW2(2k + 1) m ck k,C- 
t: x2 - (2k + 1)” k,=. ’ 2k’+I ’ (19) 

where 

[(2k + 1)2 - 4p2;[(2L + 1)2 - 4p2] - x2sk’k” 

Now, simple calculations result in the dispersion equation 

l= -w~tx2COt 72 
2k + 1 

,Jx2 - (2k + 1)2]” (“) 
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