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Abstract 

The question arises as to what effect acceleration, which 
so far has been ignored, has on the longitudinal instability of 
an induction linac. The answer is not much for the 
anticipated acceleration rate (1 - 2 MeV/m) and minimum e- 
folding distance for the instability (50 - 500 meters). 
However, total unstable growth is significantly reduced over 
distances which are long enough for appreciable acceleration 
to occur. The purpose of this note is to record a calculation of 
the instability, including a constant acceleration rate. Some 
interesting features emerge -- for example, the velocity of the 
head is a more convenient independent variable than axial 
position and, for an initial sinusoidal perturbation of velocity 
in time, the number of oscillations along the pulse is constant; 
as the pulse shortens in time the frequency increases. 

I. BASIC EQUATIONS AND UNPERTURBED 
SOLUTION 

We start as in previous work, with the one-dimensional 
cold fluid equations, neglecting the space charge force, and 
adopting a parallel R-C circuit for the perturbed electric field 
from the induction modules: 

mat + miaZ = 0 , (1) 

ih / at + vih/ dz = E, + E , (2) 

aE/& + E/r = -eAI/mC , (3) 

where E. is the applied field (multiplied by e/m), C is the 
circuit capacity and z = RC. The circuit parameters, R and C, 
might in general depend on axial position. E and AI are the 
perturbed components of electric field and beam current, 
while I, h, and v are total beam current line charge and 
velocity. 

The velocity of the head is given by: 

vii = v2 + 2az , (4) 
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where a is the constant acceleration and vi is the head velocity 
at z = 0, where the initial perturbation occurs. 

We change the independent variables (z, t) to 
Z=z and: 

I 

z 
?=t- e ) 

0 

Eliminating h, the fluid equations become: 

d 1 
x v- VH l I 

J- I+j$O, 

;+v$=E,+E, 

& E eAI _- -jy+7= mC . 

(5) 

(1’) 

(2’) 

(3’) 

II. CASE OF INCREASING CURRENT 

For the unperturbed pulse, we take I = vH Ii / Vi , 
independent of time during the pulse and lasting for a time, 
T=viTi/vH. The velocity during the pulse is given by 
(1’): 

v=vH1 
l?L (6) 

VH 

Note that aT/vH is the velocity tilt Ap/p. In the GeV energy 
range, this quantity is quite small. The required voltage wave 
shape as a function of z and t is given by (2’): 

E, = a 

III. INSTABILITY 
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on Z and I. However, the equations are greatly simplified by 
replacing Z and i by VH and a scaled time: 

vH = jlv: + 2aZ , (8) 

t’ = VHT ) 
vi 

and taking the perturbed quantities to be of the form: 

I+AI=FIi(l +U) 
. 

The equations for u, ?, and E are: 

t 1 
3 

al 1 -= 
JVH 

-a l-t+ $ , 
avi dt VH 

& lE 

av,=a ’ 

aE 2 E 
dt’+vHT= - k2 V~IJ 1 9 

k2 e1. =- , 
mCv” 

(9) 

(10) 

(11) 

(12) 

(13) 

These equations are of the same form as those for the 
unaccelerated case except for the cubed parenthesis in (10) 
and the factor, Vi/VH in (12). The equations are exact in the 
sense that at/v is not yet assumed to be small. The duration in 
t’ is: 

T’ = VHT=T. I ’ 
vi 

which means that a disturbance maintains the same relative 
position in time as the pulse shortens and the rate of change in 
real time increases. In particular, a sinusoidal perturbation 
would retain the same number of cycles over the pulse 
duration, as mentioned above. 

Equation (12) is simplified if we assume that the gap 
capacity is independent of position but that the matched 
resistance is inversely proportional to the current (directly 
proportional to pulse duration). Equation (12) is then: 

aE/dt' + E/~i = -k2V3U , 

Furthermore, the extra terms in the cubed parenthesis in 
(10) appear to give corrections of order Ap/p and can be 
neglected. The equations then have the same form as for the 
unaccelerated case; if the initial perturbation is : 

0 cz = 0) = &iat , 

a particular solution for i; is: 

$= Seia*COS[+ \IIz(VH - Vi)] 

(14) 

= Se’“+‘cos[kz{~ v::vi] . 

For a = 0, we have vi = v and the e-folding rate with z is 
the imaginary part of Jiwr/(l + iwr) k . The maximum 
growth rate is k/a, which occurs when 02 = I/1/5. For a f 
0 and z large, vR - E and the perturbation only grows 

exponentially with ~1’~. However, if k - (50 meters)-l, the 
accelerating gradient - 1 MeV/meter and a perturbation occurs 
at - 1 GeV, there are many e-foldings before VH is 
significantly greater than Vi. The coasting beams assumption 
is then good enough to show the nature of the problem, 
however it is of interest to examine the breakdown of this 
approximation over long distances. 

Iv. CASE OF CONSTANT CURRENT 

So far we have computed the instability growth rate for a 
pulse where the current increases proportional to vH(z), i.e. 
approximately fixed pulse length in meters. It is also of 
interest to compute growth for the case of constant current, 
where pulse length increases proportional to vH but pulse 
duration T is constant. This could be the preferred approach 
at high energy if a practical lower limit on pulse duration for 
the synthesis of acceleration waveforms is observed (say T > 
100 ns). In this case the unperturbed velocity of the entire 
pulse is v(z) = vdz) = w , and in place of eqns. 
(1’) - (3’) we have for the perturbed components Av, AI, E: 

v2aAIl& = h’Avl& , (1”) 

d(vAv)l& = E , (2”) 

&/& + E/z= -eAI/mC . 

Since E. and I are both constant it is reasonable to 
assume R and C are separately constant, since for efficient 
energy transfer we scale 

where ri is the time constant at z = 0. R=EJIandRC=z=T=I-’ . 
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With these assumptions eqns. (1” - 3”) yield an equation for 
Av: 

density, and constant current), it is convenient to define a 
scale length proportional to vi?: 

( 1 ;++ -$ (vAv)=- 2 -$ & (vAv) . (1% z, = vf/2a , VH=Vi ITT?& 9 

Taking an initial perturbation, Av = 6 eiu roasting: Av 0~ cos kz , 
with w real, we have 

Current uronortional to v: 

a2vAv = -k 2 

dz2 (16) 
) 

where k is given by eqn. (13). 

In general, eqn. (16) is solved by the bessel functions I2 
Constant Cu rrent; 

and N2 of the argument x: 
Avw 11 +:J'8cos[kz~~ 1 +(I +Y&)U2 

xzq/--~3’2(fi-fl) . 
(17) 

A convenient asymptotic form, obtained by the WKB 
method. is 

Av = 6ei”(vi / v)“~ cos (x) _ (18) 

Again, for small z growth is identical with that of the 
coasting beam. However, for large z a perturbation increases 
exponentially with zli4. This reduced rate of growth reflects 
the dilution of line charge density during acceleration at 
constant current. Note that the number of wavelength within 
the pulse (= wT/27r) remains constant, as bcforc. 

V. SUMMARY 

In order to compare growth formulas for the three cases 
we have examined (drifting beam, constant line charge 

0.00 1.0000 

0.30 1.1402 

1 .oo 1.4142 

3.00 2.0000 

10.00 3.3166 
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1 + z/z,) 

l/4 . 

1 

Keeping in mind that z. will be in the range 100 m - 
2000 m, the following table gives the predicted reductions in 
the exponential of growth. 

Note that for short distances of a few hundred meters (z 
5 zO) the coasting beam growth rate is an adequate 
approximation. At most, a few c-folds of growth are expected 
in this distance, and feedforward correction might be applied 
to eliminate further growth. IIowever, when long distances (z 
>> zO) without u.sc of corrections are considered, it is seen 
from Table I that very substantial reductions of total growth 
are predicted. 
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I = constant 

2 
(1 + VH/Vi) 

1 .oaoo 1 .oooo 

0.9345 0.9038 

0.8284 0.8013 

0.6677 0.5523 

0.4633 0.3285 

4 

(1 + VH/Vi) (1 + m/Vi) 

30.00 5.5678 0.3045 I 0.1813 
Table I. Reduction of growth with acceleration for current proportional to velocity and -. . constant current. .l’hc tabulated factor is the reduction of exponenual growth rate 

compared with that of a coasting beam. 
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