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Abstract 

A semianalytic formalism was recently developed for inves- 
tigating the transverse dynamics of a mismatched, space- 
charge-dominated beam propagating through a focusing 
channel. It uses the Fokker-Planck equation to account for 
the rapid evolution of the coarse-grained distribution func- 
tion in the phase space of a single beam particle. A simple 
model of dynamical friction and diffusion represents the 
effects of turbulence resulting from charge redistribution. 
The initial application was to sheet beams. In this pa- 
per, the formalism is generalized to fully twodimensional 
beams. 

I. INTRODUCTION 

We recently introduced a semianalytic formalism describ- 
ing the dynamics of transverse emittance growth and halo 
formation in nonrelativistic, mismatched beams arising as 
a consequence of nonlinear space-charge forces [l, 21. The 
formalism is based on the Fokker-Planck equation govern- 
ing the evolution of the coarse-grained distribution func- 
tion of beam particles. The Fokker-Planck equation in- 
corporates coefficients of dynamical friction and diffusion 
in velocity space. Turbulence excited as a consequence of 
charge redistribution enhances these coefficients and con- 
verts free energy due to mismatch into thermal energy. 
If the local free-energy density is sufficiently high, mi- 
croinstabilities may cause turbulent fluctuations to grow to 
large amplitudes during a fraction of a plasma period [3]. 
The fluctuations attenuate, however, via Landau damping 
on the same time scale [3], and heating can therefore oc- 
cur very rapidly. Relaxation toward Maxwell-Boltzmann 
equilibrium ensues on a time scale determined by weak 
residual turbulence. These processes generate emittance 
growth and halo by injecting particles into high-amplitude 
orbits. They also dissipate any fine structure present in 
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the beam at injection. Heating and relaxation of space- 
charge-dominated beams can occur during beam transport, 
as observed in laboratory experiments and numerical sim- 
ulations [4]. 

To develop methods for inhibiting emittance growth and 
halo-induced radioactivation of the accelerator walls, we 
must first know the associated dynamics and time scales 
in realistic beams. Our initial application of the formalism 
was to sheet beams. We now generalize it to enable ready 
investigation of fully two-dimensional beams. 

II. GOVERNING EQUATIONS 
In a turbulent beam, the simultaneous interactions of a 
particle with many rather distant particles dominate bi- 
nary coulomb interactions with nearby particles. This cir- 
cumstance generates dynamical friction and diffusion in 
velocity space. We discuss beam evolution from the per- 
spective of a comoving coordinate system. According to 
the Fokker-Planck equation, the evolution of the coarse- 
grained distribution function W(x,u, t), in which x, u, 
and t denote position, velocity, and time, respectively, is 
determined from 

(1) 
in which K is the net force per particle mass M in the 
comoving frame, 

F= -9, D = 1 WA4 
2 At (2) 

are the dynamical-friction vector and diffusion tensor, re- 
spectively, and At is a short time during which the fluc- 
tuations modify the distribution function [5]. Both the 
distribution function and the net force are regarded to be 
smoothed out. 

The spectrum of electric-field fluctuations determines F 
and D [5]. We do not know these coefficients a priori; how- 
ever, it should be possible to infer them by studying indi- 
vidual particle orbits in N-body simulations [6]. In general, 
the coefficients may be expected to be functions of posi- 
tion, velocity, and time. We shall ignore the position and 
velocity dependencies and model the beam as a fluctuat- 
ing fluid in which particles execute Brownian motion. We 
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take F = -P(t) u and D = D(t)& where /3 and D are the 
time-dependent relaxation-rate and diffusion coefficients, 
respectively, and I is the identity tensor. This simplifi- 
cation, which says the beam has uniform “temperature”, 
is likely to be most appropriate for particles moving with 
velocities not much exceeding the thermal velocity, just as 
it is when only binary coulomb collisions drive relaxation 
[5]. It may therefore be expected to apply to “typical” 
particles comprising the central region of the beam. In 
actuality, the relaxation rate is slower for fast particles be- 
cause they have less time to interact with localized field 
fluctuations. Consequently, because halo particles either 
move rapidly through the core or do not sample the core, 
the halo may be expected to thermalize more slowly than 
the core. This is seen in simulations [4]. Despite this short- 
coming, our simplified coefficients should be useful both for 
studying the evolution of fine structure in the beam and 
for investigating halo generation from the core. By design, 
the formalism developed here can be adapted to accom- 
modate coefficients with spatial and velocity dependencies 
once they are known. 

The dynamics we have described obviously operate in 
three dimensions. In what follows, we consider only the 
two-dimensional dynamics in a plane orthogonal to the ac- 
celerator axis. The Fokker-Planck equation in cylindrical 
coordinates (I-, 8, ur, ue = r de/&) is 

Ug 8W 
g!+ug+-- 

r de 

+ (Ke- y) 2 = 2pw 

a2w+ a2w 
- - a+ au; > (3) 

where K is given by the superposition of the focusing force 
and the space-charge force found from the coarse-grained 
potentials Cpf and ad, respectively, in the manner 

K = -+x(0, + Q’s), (4) 

where Q is the particle charge. According to Poisson’s 
equation, the coarse-grained space-charge potential is de- 
termined from the smoothed-out charge density, which in 
turn is determined from the coarse-grained distribution: 

i a aa, i a20, -- f- +-- 
( > 

= -iZTQ 
r ar dr 9 682 J J 

+E 7 +&W 
’ 

(5) 
Eo --oo -m 

where N is a normalization parameter related to the par- 
ticle density, and E~ is the permittivity of free space. 

Although the problem is formulated for arbitrary exter- 
nal focusing potential, in the following section we special- 
ize to a harmonic external potential, i.e. @f = Mw2r2/2Q, 
where w is the betatron frequency. In so doing, we ignore 
effects from, for example, cyclotron motion and beam ro- 
tation in an axial magnetic focusing field, which is to say 
we assume coriolis and centrifugal forces are small. 

III. POLYNOMIAL EXPANSION 
To solve the coupled Fokker-Planck and Poisson equations 
self-consistently, we decompose the distribution function 
into complete sets of orthogonal polynomials: 

W= 2 2 E ~A~~~~(~~)~n(ue)~~(~)eipe~ (6) 
m=O n=op=--a, q=o 

where $,,, are Gauss-Hermite polynomials, 

&(u)= [&f-l’ e-aU’Hm(&), (7) 

and e are Gauss-Laguerre polynomials, 

e-J= ; [ (,$ *)! 1 ‘(ar2)~e-ar’Llpl(ar2). (8) 
In these polynomials, we require (Y = cr(t) = P(t)/2D(t), 
while a = a(t) is a free time-dependent variable. 

Two considerations motivate the use of these sets of 
polynomials. The first is that both sets begin with Gaus- 
sians at zeroth order. This is desirable because the 
Maxwell-Boltzmann distribution of a beam in the absence 
of space charge is Gaussian in both velocity and position 
(Gaussian $0 and Gaussian 4:). The second is that this 
choice of polynomials gives AZ: = 1 for all t, an expres- 
sion which is convenient for numerical calculations. This 
expression follows directly from the particle density 

n(~,e)= N E ~A~~q!$e’Pe, 
p=-00 q=o 

(9) 

which, when integrated over r and 8, must always yield N. 
Upon evaluating the mean-square radius, we find (r”) = 
a-‘(1 -A;;). It is th ere ore convenient to let a E 1/(r2), f 
so that A$ = 0 for all t. The coefficients Ap,P, are complex, 
and A;\q = (Agn)‘. 

After solving Poisson’s equation for the space-charge po- 
tential, we find the components of acceleration to be 

IC, z -w2r + g 

( 
-&(l - e-Or’) - +F’ p=-CQ 

x { $i$&!-[~bar2 - !$(ur2)-~~([p[,UT2)] 

-g 2 [,: - 2&.&4J~~l]} eipe) ) 
(10) 

Ii’s= -NQ2 +03 ’ zpgm ( ~(“$%4,“‘2) 

+F& 1 
q=l dar &m-ii 

4;-1 
I 

ipeiPB (11) 
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Here, the prime on the sum over p means p = 0 is to be ex- 
cluded from the summation, and y(p, 2) is the incomplete 
gamma function. 

After inserting the components of acceleration into the 
Fokker-Planck equation (3), we derive a set of coupled dif- 
ferential equations for the coefficients AP,9,(t) using recur- 
rence relations and normalization properties of the poly- 
nomials. We let ‘~0 and a0 denote a(2 = 0) and a(t = 0), 
respectively, and we introduce a reference frequency wg = 
ac/oc and plasma frequency w,2=NQ2ac/2nM~c. The re- 
sult, expressed in terms of the dimensionless time C = wst 
and the dimensionless quantities &=a/ac and &=a/ao, is 

fA:n = & $ [ dmAp,4T2 ,, + (m + n)AP,q, 

+mA%w2 1 + &$ [ (lp1+2q)AP,4, 

-2mA:5-1 1 - (m+n)&AEn 

+ AP,P:ln {[lpl+2(q’+l)+rz] J;q, 

-2~(9~+~)(q’+IPl+l)J,p,,+* > 

+ ApR;I. { Ilpl+2(d+ 1) 

-@+l)lJXI - 2~(q’+I)(q’+ipl+1)~~,,+1 > 

+&z Jfippl { dm(n+l~~n+WP,P~I n+2 

-ip [ &4:‘,-, + 6iA:;+l]} 

2 AflnK;q, 
q’=O 

- E 5 E 2 A~b)q”SOp~t+p~-p 
0 p’=-00 q’=Op”=--m q”=O 

x 
{ 

2J;;;ApiI n M$$ - ihAi$- 1 N;$,: 
> ; (12) 

1 dii --= 
6 d< [(2q+I)Jpp-2(q+1)JPq+,] 1 (13) 

in which 6ij is the Kronecker delta, and 

IPP’P” _ 273 
w’q” 

~rea?$$P~~~p~~ 
~5/2 J (14) 

0 
4 q’ q” ’ 

J;;,‘(O) = $ Jmd,e~~;~;;, 
0 

Jrq, = J;;,(O), (15) 

2T2 O” 
KP , = - qq (3112 J 0 

drr2ear2gQPq,, 

MPP’P” = IPP’P” _ Jpp,‘(plt) 

‘19’0 9-?‘0 44 

Mdd’ - IPP’P” - 
qq’q”>O - qq’q” 

Nt’P’O = 0 
49’0 ’ N,P,,$“#’ = 2 J$( lp”l) , (20) 

NPP’ P”#O _ 
qq’q”>O - 

These constants, which are independent of a, may be tab- 
ulated and stored for future numerical calculations. 

The system of equations (12) is equivalent to the coupled 
Fokker-Planck and Poisson equations (3)-(5) in cylindrical 
coordinates for a general, i.e. not necessarily axisymmet- 
ric, beam. It is valid for Fokker-Planck coefficients of ar- 
bitrary time dependence, which are required as inputs. It 
is clearly nonlinear in the coefficients, a property which is 
a signature of the nonlinear space-charge force, and must 
therefore be solved by numerical integration rather than by 
matrix methods. The number of nonzero coefficients will 
generally shrink in the presence of symmetries. In addi- 
tion, AZ:(t) = 1 follows from the conservation of the total 
number of particles, and AZ;(t) = 0 identifies the free vari- 
able a(t) G l/(r’). Th e initial conditions are determined 
by decomposing the input beam into its polynomial com- 
ponents. A generalized emittance can be defined which 
is appropriate for use with beams in which the Cartesian 
components of the motion are coupled [7]. It is straight- 
forward to express this generalized emittance in terms of 
the coefficients of the polynomial expansion. Examples of 
solutions will be discussed in future papers. 
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