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Abstract 
A moment method technique for solving 

Laplace’s equation is presented. The technique is then 
extended to Poisson’s equation to include space charge. 
The procedure is implemented on a PC and applied to 
the cases of an electrostatic quadrupole (ESQ) lens and 
an ellipsoidal bunch in a grounded pipe. 

I. INTRODUCTION 

Currently WC arc engaged in the design and 
development of a Low Energy Ream Transport (LEBT) 
section for H- ion beams [l]. We have chosen to 
employ electrostatic lenses in this design, since for low 
ion velocities magnetic lenses fail to provide enough 
focusing for intense beams while gas focusing is 
intrinsically stochastic. The current prototype consists 
of 6 ESQ lenses In order to model the action of such 
a lens it is necessary to solve Laplace’s equation for the 
particular lens geometry Once the lens is charactcrizcd 
electrically, the information may be used in other 
simulation tools to aid in design. 

In general, numerical methods must be utilized 
to solve Laplace’s equation. We present a technique 
which is fully three dimensional yet is efficient enough 
for implementation on a PC. The efficiency of the 
technique arises from the fact that it is based on an 
lntcgral formulation rather than the more common 
differential form. Instead of solving for electrostatic 
potcntinl directly, we solve for the surface charge 
density on conducting bodies. This results in a reduced 
dimcnsionality of the problem domain. The integral 
formulation also readily extends itself to Poisson’s 
ccluation. Thus, we can model lenses in the prcscncc of 
charge distributions. Also, since WC know the surface 
charges. we may evaluate capacitances between various 
lens elcmcnts 

II. NUMERICAL TECHNIQUE 

:I. Lnplnce’s Equation 

Letting 0 denote electrostatic potential, the 
problem is usually seen in the mathematical form 

V@(x) = 0 VXf3-J) 
(1) 

O(x) = fix) vxd?. 

Here R is the 3D region of interest and 1.’ is its bounda~ (i.c 
I-=8!2). The function f represents the given boundar)’ \‘alucs 
and constitutes the data of the problem. Usually (1 represents 
the beam line and r is the surface of a focusing lens, thus 1’ 
would be the lens voltage. A finite differencing method l\ould 
typically attack this problem directly. Howcvcr, we prcfcr to 
work with an integral representation of the problem rather than 
the differential form [2]. 

where 

Ax) = [G(x,S)o(f)d'F;, (2) 
r 

GM) = l 
4x lx - F, I 

(3) 

is the fret space Green’s function for Poisson’s ccl~lion l‘hc 
function CJ is introduced as the new unknown for lhc p~-~~bl~n~. 
It is recognized as the surface charge density on the boundar!~ 
1‘. Once (5 is kno\\n, b ma). be rcco\zcrcd 1 ia 

w> = p&s, u(4V”S VXEQ. (4) 
r 

Note that the dimcnsionalit! of the problem has been reduced 
In (l), 4 must be solved on 0, a 31) subset of 1:‘: \\hilc (~2) is 
defined only on the 211 manifold r. 

We employ the method of moments IO solve (21, the 
details of which arc presented in [3] Qualitatix~cl!‘, the 
technique is vary similar to the rcprcsentntion of a quantum 
mechanical operator in matrix form. WC cl100sc il si’t of 

expansion functions {u”] on 1.‘ which is used to approsimatc 
CT, that is a(s)=Ca,u,,(s), for some set of a,,ER Another set ot 
functions called weighting (or testing) functions -f\‘,,,j is also 
se&ted. At’tcr expanding (2) in ‘(u,,> \vc take the inner 
product with each of the v,,,‘s Wc end up \\,ith a scrics 01‘ 
linear equations where the a,,‘~ are the unknowns. This system 
may be solved by standard matrix methods WC apply n 

conjugate gradient algorithm to this end [4]; this is an itcrati1.c 
method which seems to provide fastest con~wgcncc. 

For our moment method we chose i’or {u,,; a sot 01‘ 
piecewise constant functions, constant over the face of a 
triangle. Specifically, r is triangulated (approximated I,!, 
triangles, for example see figure 1) and (T is assumed constant 
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over each triangle. This selection results in a finite 
element representation to (2). For the weighting 
functions we selected Dirac delta functions located at the 
centroid of each triangle (this is known as point- 
matching). This allows fastest evaluation of the inner 
products and yields good results as long as the triangles 
are sufficiently regular. 

B. Extension to Poisson’s Equation 

If we wish to model a charge distribution p in 
the presence of our boundary I?, it is convenient to 
csploit the linearity of the integral operator in (2). That 
is the potential at the boundarv must be the sum of that 
due to both CT and p. 

A-9 = @GO 4W”tI + ~G(x,i)~& (3 
r n 

or 

It4 - 4$(x> = pxmJ(w2s (6) 
r 

Ivherc 4, is the fret space potential due to the charge 
distribution p, given by the second integral in (5). 
Equation (6) is similar in form to (2) and ma)’ be solved 
by appl!,ing the method of moments as before to the 
boundary data f-O,, Thcrcforc; it is only necessary to 
determine I$,,, the fret space potential due to p, in order 
to apply the method to Poisson’s equation This may be 

- done numerically or analytically (if available). 

111. APPLICATIONS 
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Figure 1: Triangulated ESQ Lens 

The preceding technique was implemented 
implemented with a computer program written in 
Borland C++ 3.1 The platform was an i486 PC 
operating at 33 MHz and running Windows 3.1 
operating system. All csamplcs where run in double 
precision arithmetic. 

.4. ESQ <ens 

A 3D potential problem is the modzling of an 
electrostatic quadrupole lens. Figure 1 shotvs the computer 
model of an ESQ lens similar to the type used in [I] It is 

formed from 4 cigar-shaped electrodes, the beam would cntcr 
from the left. Each electrode is 59 mm long and has a rndi~is 
of 12 mm The aperture of the entire lens is 10.5 mm. T\vo 
grounding shunts arc located at z=*3 I mm (they arc not 
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Figure 2: ESQ Lens Focusing Function 

shown in figure I to a\,oid clurrer) \vhich pro\,ldc isolat~<~n 
from ad.jacent lenses 

The single particle focusing el‘fcct ( the kapp;~ 
function K(Z) ) from such a lcnscs can be dctcrmincd from the 
derivatives dE,/ds and dEJdp on axis. Figure 2 sho\\s the 
computed data for the v-plant for the cast in l\,hich the s- 
plane electrodes arc dri\xzn to IV and the y-plant clcctrodcs 
are held at -1 V. The grounding shunt at cithcr end of the Icns 
cause the rapid decay in dE,ldy 

W. Ellipsoidal Bunch in n Pipe 

6 ~ ,qIp: -.T- 
.e. 

,- 2 2(x: ;fY 
4 3 4 _- 

E , 0 ; 
<1. 2s 0 
:: 2- ‘ilI 

Lx - >rjc, 2 
,i lx . 

i-, 

;[t 

-;j.65 
..jCVJ hJ 

-(>,lJ2.!j 3:; 0.025 Q.C:5 

I r-. - PO[gilidl -- --- ----~ rr:r~;~.;;;-,,l 
l-- ______.. -.. -- 

Figure 3: 2.5: I Ellipsoid in Pipe 
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We can use the Poisson extension to simulate 
a uniform charge density ellipsoid in a conducting 
cylinder. This situation is useful in modeling cold 
bunched beams propagating through a beam pipe. 
There exists an analytic solution for the potential of such 
an ellipsoid in free space [5]. Thus, it is only necessary 
to model the pipe (surface charge) numerically 
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‘igure -l IO:1 Ellipsoid in Pipe 

Figure 3 shows the axial potential and z 
component of electric field for the case of an axis- 
symmetric ellipsoid with major axis 2.5 cm and minor 
axis 1 cm inside a pipe of radius 2 cm. In this case the 
fields arc still relatively linear, the image effects from 
the pipe are slight. However, in figure 4 we see a very 
nonlinear field for the case of an ellipsoid with major 
axis 10 cm and minor axis 1 cm. We find that after the 
bunch length becomes comparable to the pipe radius the 
image effects play an increasing role. The total charge 
in both cases is 10’” C. 

The above simulations can be used to determine 
the so called “g-factor” for bunched beams in cylindrical 
pipes. A detailed discussion of these results can be 
found in [6]. 

IV. CONCLUSION 

The method of moment technique has several 
advantages and disadvantages. The overall advantage of 
the technique stems from the fact that only surfaces are 
considered, rather than 311 regions. Hence, it is a good 
method to model complicated or otherwise arbitrary 
geometries. For the same system order, we get a higher 
boundary resolution as compared to finite differencing 
on a grid. Also, since the surface charges arc solved for 
it is possible to calculate the fields anywhere in space, 
without interpolation. This fact allows us to apply the 
method to unbounded situations 

When dealing with the situation of conductors in a 
vacuum the moment technique is in general quite successful 
However, if many dielectrics are present it is probably best to 
use finite differencing. Also, when it is necessary to km)\\ 
the fields over a large set of points, say when doing man!’ 
particle simulations, it is probably best to use finite 
differencing. Computing the potential is a moderateI\ 
expensive process, since we must evaluate (4) at each point, 
while finite differencing solves for the potential directly. 

For the situations discussed the technique is \vcll 
suited. We need full 3D solutions, yet only for the case 01 
conductors in a vacuum. Also, we are only concerned \vith 
the solution data along the beamline ask. ‘T’hercfore, the 
number of data points to compute is a minimum. 
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