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I. INTRODUCTION 

The problem of space charge continues to be interesting 
in connection with the development of Kaon and Neutron 
Facilities and Superconducting Super Collider Projects. In 
the first, a high average proton beam intensity can be 
reached by super-high peak currents in each acceleration 
cycle, so a painting procedure is required. In colliders, as is 
well known, super luminosity can be reached by minimizing 
the emittance growth during acceleration. In other words, 
the task consists of accelerating beam with the maximum 
attainable current density and with minimum achievable 
emittance growth. This is why this task arises when new 
accelerator projects are developed. 

At least two possibilities exist how to investigate the 
space charge effects at the design stage: analytical and 
numerical simulation [l-3]. Each of them has its own ad- 
vantages and disadvantages. Numerical simulation using 
the macro-particle approximation is very well developed 
but requires a lot of computer time and so little flexibil- 
ity in variation of the initial conditions. Because of this 
numerical methods are restricted in their optimization ca- 
pability. 

Analytical investigations gives a clearer picture of the 
physical phenomena but the necessarily simplified the 
physical model sometimes gives an incorrect interpretation 
of the results. Analytical research can be divided in two 
types: the envelope equation method for self-consistent 
distributions and the nonlinear equation for higher distri- 
bution moments . In our work we use numerical simulation 
as the base to achieve the correct results, but for interpret- 
ing the results, the simplified analytical model is used as 
well. 

II. PROBLEM STATEMENT 

In almost any accelerator emittance growth is observed 
during beam injection. This is due to resonance crossing 
and mismatch between the beam and the acceptance. But 
this growth depends on what distribution is chosen during 
injection. In this paper we study the emittance growth 
under resonance crossing for different initial beam distri- 
butions. To eliminate the reasons for emittance growth 
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Figure 1: Phase space and twe diaprun for K-V (a), waterbagjb) 
and Gal&an (c) distributions. 

we consider a linear lattice without errors. In this case 
the emittance should grow only because of the intrinsic 
resonances; or in other words, the envelope oscillation. 

III. NUMERICAL CALCULATION 

The problem is solved for three different initial distri- 
butions: K-V, waterbag and Gaussian. To simulate self- 
consistent beam motion a two-dimensional tracking pro- 
gram is used. Space-charge forces are found by solving the 
Poisson equation with zero boundary conditions. Longitu- 
dinal motion effects and beam bunching are not taken into 
consideration. The particle oscillation frequency is found 
from the rotation angle in the normalized phase space. As 
a test lattice, we use the racetrack structure for TRIUMF 
Booster with two arcs and working point 7.65j5.6 although 
these results could be useful for the SSC LEB and AGS as 
well. 

The initial phase space projections and the advanced 
phase diagram are shown in Figs. l(a), l(b) and l(c) for K- 
V, waterbag and Gaussian distributions respectively. For 
each distribution we take the same TWZS emittance.One can 
see that all distributions have the same centroid, indicating 
the same coherent tune shift. 

Figure 2 shows the emittance growth versus the number 
of turns for different distributions. The maximum emit- 
tance growth (a factor 2.8) was observed for K-V and wa- 
terbag at only a factor 1.25 for the Gaussian distribution. 

Figures 3(a), 3(b) and 3(c) show the phase space for all 
observed distributions after five turns. It is obvious that 
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k’igure 3: Phase space for K-V (a), waterbag (b) and Gaussian (c) 
distributions after 5 turns. 

the beam passes through half-integer and fourth-order res- 
onances. In all cases the amplitude of oscillation is finite. 

Figures 4(a), 4(b) and 4(c) show the distributions af- 
ter 45 turns. For waterbag and K-V distributions we can 
observe a half-integer resonance which is stabilized by a 
fourth-order resonance. For the Gaussian distribution we 
observe the distribution stabilized by a fourth-order reso- 
nance. 

Figures 5(a), 5(b) and 5(c) show the final distributions 
for the same cases. The instability does not grow. They 
are stabilized, but the particles are still in the half-integer 
resonance excited by the envelope oscillation. This self- 
stabilization phenomenon is known for nonlinear system, 
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distributions after 45 turns. 
Figure 4: Phase space for K-V (a), waterbag (b) and Gaussian (c) 
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Figure 5: Stabilized distribution for initial K-V. (a), waterbag (b) 
and Gaussian distributions. 

but in the space-charge problem we observe a system where 
the nonlinearity changes with time. 

We now try to explain the phenomenon using a simpli- 
fied analytical model which describes the resonance inter- 
action. 

IV. ANALYTICAL DESCRIPTION 

Taking into account that we treated the two planes sep- 
arately in the numerical experiment, the analytical study 
has been performed for a symmetrical cylindrical beam. 
The Maxwell equation for the symmetrical beam with den- 
sity distribution p is: 

1 a(TEr) _ 
r ar $+) (1) 

We choose the m-order binomial distribution, which in- 
cludes in itself the three types of distribution considered: 
Kapchinskij-Vladimirskij (m=O), the waterbag (m=l) and 
the Gaussian (m -+ co): 

p(r) = J$[l - ;]--I, (2) 

where b is the maximum size of the beam. Then the dis- 
persion function u is defined as CT = J& and the rms 

emittance srms = u2/p. The equation of motion for any 
particle will be: 

2 + K;(s)?r - *&w = O, (3) 

or using the smooth approximation r = qfi and the new 
longitudinal coordinate d6 = Qds 

$I+ u,217 = 2~o~-51 + CbP cww~)~ 
C4) 

P 

where we use the Fourier expansion for /3 = p(1 + 
C, bp COS#) and the mean p-function p = E, R being 
the average radius of the accelerator. 

3643 
PAC 1993



Usually one denotes the value ~~N/&rfl~y~&,.,,, as the tune 
shift 6~. Bogolubov’s method can be used to solve this 
nonlinear equation: 

‘I= &cos@ 

7j’ = -vu&sin +, 

or passing to new variables 

(6) 

w2+(32 

@ = - arctan($/Vc7]). (7) 

Differentiating the new variables E and + with respect to 
0 and substituting (6), we get: 

dE 

z= 
-2bvussin 2@[1 + c b, cospO]F(e) 

P 

f$ = u. - 26~~0s~ 9[1+ c b, cospO]F(~) (8) 
P 

The function 7(s) h as the same meaning as (6), but with 
a new argument * cos2 9. In the absence of any reso- 
nances we can average (9) over the whole cross section of 
the beam: 

2-& 
de= 0 

where Au is the average tune shift. It may be sham that 
equals i6v for Gaussian, 9 5Su for waterbag and $6~ for 
K-V. This means that in a resonanceless system (b, = 0) 
the emittance does not grow and the coherent tune shift 
does not depend on the distribution with the same urns 

emittance. On other hand the tune spread is a maximum 
for the Gaussian and equals zero for the K-V. 
In fact, for any lattice the Fourier expansion of the enve- 
lope P-function involves in itself all harmonics which could 
give the resonance condition for emittance growth. Con- 
sider the case when 3 involve just two terms and can be 
represented as F = fo - sfi cos’ a. Then 

z 
ds = bveb,,, fo sin(2+ - me) - 

SUE2 fib,,, [f sin(2+ - me) - a sin(46 - me)] 

;1; 
- = vo - 6yfo + &fl + &fob,, COS(~Q, - me) - d6’ 

bvrflb,,,[i cos(a<P - 7~9) + 5 COS(~+ - ,gl, (lo) 

where m is the resonant harmonic number with ampli- 
tude b,. One can see ‘from these equations that any 
square nonlinearity in distribution gives the half-integer 
and the fourth-order resonances simultaneously. They can 

exist only together. The main question is only whether 
the fourth-order resonance stabilizes the half-integer reso- 
nance. The trajectories of particles on the phase plane are 
described by the equation: 

+b,,, foe cos 2‘IE - +b, f,E2 CDS 2!P 

-(Yo - 6“fo)E - +fls2 - +ivfob,rcos 24 + 

;bYflbmE2 cos 2’4’ = C(E, 9), (11) 

where * = Q - me/n is the “slow phase” in the n-th order 
resonance. The terms with ~~ stabilize parametric reso- 
nance. So for the distribution where the square term is ab- 
sent, the half-integer resonance will give sufficient growth. 
Of course we should explain here that our analytical model 
doesn’t allow us to take into account the self-consistent re- 
distribution, which could create the term with E’ for any 
distribution after passing through the resonance. At least 
this explanation gives the answer why the emittance grows 
so strongly in the resonance for the K-V distribution. 
Using more high-order terms of the binomial distribution 
it is possible to show that any order resonance will be sta- 
bilized by the next order distribution. Since the envelope 
P-function has all harmonics we will always have the res- 
onant condition for one or more harmonics. So maximum 
stabilization will be observed for the Gaussian, where any 
perturbation will be distributed over an unlimited number 
of harmonics. 

v. CONCLUSION 

We have studied in this paper a beam passing through 
the grid of intrinsic envelope resonances, where the half- 
integer resonance is maximum. At the initial stage a beam 
with any kind of distribution is very sensitive to the half- 
integer and fourth-order resonances. During 60-100 turns 
the distribution becomes self-stabilized and very similar 
to Gaussian. Ma-ximum growth is observed for maximum 
uniform distribution in real space. For intrinsic resonances 
selfstabilization occurs when most particles remain in res- 
onance. 
In conclusion we would like to thank Dr. A.Iliev for helpful 
discussions during this work. 
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