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A ht7’clf~f 

This ]‘al>er tlesuibes a I-learn dynamics code ‘F’IC :N’ for 
simulat,ion of high current8 proton Iemx3 in an isochronous 
azilllutll;tlly-varying-fiel[l c-yclot,ron. It, is assumed that the 
rrlc~lian [‘lane and vedical motions are tlecou~~led, so that 
tlit‘ inr,crnal sl’ace-dlargr forces can be calculated by a 
l)itrtiCIe-ill-Cell method alq>liecl to the median plane charge 
dist,riI)ut,ion. We assmue olWrat,ion in a regime where verti- 
c.al foc.\isillg is not. weak. This I>al>rr dptails t,he sirnulat,ion 
lrlethocl anrl al)l)roxitl-tatiolls. including a surrirriary of t.hc 
cquat,irlns of motion. Results of t,lic co(lr, when al>I)lietl t,o 
the P.S.1 Injector II cyclotron are j>resent,ecl, and compared 
wit,11 rcsult,s frotli an earlier c-ode that treated the barn as 
WIII~KXKY~ of it distril,ution of rigid sl)heres. 

I. INTROI)U(:TION 

As has I)PPKI noted by several authors [I] [‘L] [S], space- 
charge is itrlport,ant, in isodlronous cyclotrons for the fot- 
lowing reason: there is no longitudinal focusing and there is 
ht,rong ratti~tl-;tzirrlut,hal coupling. Because the space-chargp 
Ixlrc?ric. firitls are scvprely non-linear, l>rac-t,ic*al investiga- 
t,ioll UIIIS~, ])roceed lay nurneric,al rrlethods [4] [S]. 

Thcs original c0de ‘PIGS [?I] . considered t,hr beam to be 
fortrlpcl of charged sl’hcres, and c.ornl)let,rly nrgirrt,ed the 
inbrrnal lllotions within these sl)herrs. The main argument, 
t.cj just,ify t,liis silnl>lificat,ion was t,lrat, t,he betatron oscilia- 
t.ions arp ~r~rich faster movements than the deformations of 
a tIpam Ilunch clue to sl)are charge forces. 

The new siruulat,ion COC~P, to be called E’I( !N, assumes 
that t,lir radial and the vedical lletatron motions are clr- 
(-ou]~ld, .just as in the code F’I(:S. Howevpr, the median 
]‘lan~ internal ruot.ions within a charged q’herr are now 
t.0 IW inclu(led ex]>licitly. The q)hei-e -is tl~corril~osecl intro 
cylintir,rs and ttip c*ylinders are cliviclptl int,o vdical rods 
or f~~~c(lles. There arc now new frecdorns in the motion: rods 
wit,hill t 11~ S~IIIC init,iat sl’herc neetl not, have t,he same WII- 
t,rp nor t,lie sarrle osc-illat,ion frequenq, and individual t,ime- 
clpppnderit, ~~~oclulat~ions 0f t,urie anti bet.at,ron amplit,ude are 
now allowed. The new model assllmes that all needles have 
the saflle, fixed height,; i.e. t,lic sphpres are replaced by full 
c~yliri~lers. Thp artificial force law used in F’I(X is replaced 
Iq t,llc> force I>et,ween t.wo uniformly charged vert,ical rods. 

A, Elemrntcq fowe lnu! betu~~r~ two needl~.s 

(:onsider t,wo l)arallel rotts c?f length :!6 sellarated by a 
ciist,anc-e (1 wit,h charges CJ1 and Qz resl’ec-tivety. Then the 
1111itua1 rq>rdsivr~ f0rc.c is 

F(rc, 6) = 
Yl x wz 

‘Lnr,j n (26)” 

II. hfOTION EQuATIONS 

The centre of charge (ad 
An arbitrary particlp in t’he 

Ii-i THE LABORATORY FRAME 

[ilass) moves wit,h vcl0cit.y Il. 
bunch has s0111e ve!ocity v. We 

, 
should like to find an equation for g (v - u). We use t.hc 
energy equations to elimirlat,r the t,iule ilcrivat#iveb of tllf, 

y-fact,ors from the momentum equat,ions. For t,he reference 
particle: rnoyllrlu/dl = FG” - U(U Frr)/c2 For the 
general L’article: ~o~~,rlv/tll = FG“ + FPT-v[v.FPS]/? 
where F;< = F”’ - v[v . Fsr]/? F’” is an rxt.clrnaliy ;I]>- 
l>lietl force clue t,o magnets and c.avit,ips, say. F”” is t hi> f0rc.c 
due to space-c-barge; i.e. fro111 the ~1101~ asserr~l~~ly of w1lic.h 
the ‘t,est,’ particle is a mernbpr. 

A. An rxpr~ssio~l foo7. spacwlm~/~ fo1.c~ 

The space-charge t,erm c-an he expressed in tertlls of t,hc 
Coulombic electric fields, clue to t,he asse~nbly of l)art,ic-tesi, 
as measured (or calculated) in the frame co-moving wit,li 
the centre of mass of the groul>. We now define /I and I t,o 
rriean parallel and l>erlWnclic-dar to 11. Let, the elect.ric ficltl 
lx EiC iii a frarrle whit-h is c-o-rrioving wit,lI 11. It is assrlll~rtl 

that in this rest, frame (of t,he hllnch) t,herr is an electric 
field EL, but no rnagnet,ic- field B:,. The elcc%ric fiel~l is 
resolved into coml>onents transverse and longit~utiinal t,iI 

the reference motion: E’ = El + E;l. In the lal>orat,ory 
frame the sllace-charge force on a t,est IXut,icl? is: 

F” = q [El, + yu E’, + v A (II A E&/c’] (1) 

The vector VA (UA E’,) occ,urring in the sl)ac-r-dlargr force 

term, FS’ equation (1)) is l>erpendic.ltlar t#o v and so t.hc 
magnetic field due to the beam c-annot, alter the energy. 

Wc now substitute v = VII +v~ = u + av ;tntl note t,lrat 

1Fy = (El, + y 
(1 

,,E’,) (1 - 9, - $(l;,,k;; +vL$Q 

(2) 
is an exact, expression. Now, to first, order (1 - U~JII/?) z 

1 /ru = l/~~ Also note t,li;it, t,lie final term of (2) in ddv/? 
is negligible. Hen<-e, now al~proximately. 

F;” = (u/x) [E: + Ei,/^ru] 

R. Explicit Repwserhdlon 

We acknowledge the c-ylintlricat syrrmlrt,ry of the cy- 
clotron al,plied ECz and B’” fieltls, and aclol)t, cylintlric.al 
kjolar coordinates (p, $, .z) for the reference l’artic-lr I)usi- 
t,ion xg = oe,,(qfJ). We not,e t,hat wit,11 s1)a~‘d~:trgp there 
are preferent,ial directions parallel and I~erl>erldic-utar t.0 111 
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antI t,:tkr a Ioral c-artesian (rect,angular) coordinate sys- 
tr,Ill (1., s, t) for t,he position vect,or of a general particle, 
x = xg + f?,,T + QS + 8,~. The velocity increment is 
Av = (F - sd;)e,, + (4 + r&?g + ,zzz 
$5 is a reference coordinate, and we specify this to be 
is(d~rorious so t,llat. it rotmates at, c-onstant angular veloc- 
ity $ = dC = (q/n1~)H~. In this c-ase. 

A+ = r?,,[ii - ‘L&d,. - cdzt.1 + e+[i + 2iid, - w:.s] + e22 

We tilllst c.olIlI)are the above identity for accelerat,ion wit,h 
t.hr e(1uat’ion for forces. For I)revit,y, we set (q/nl,,) equal to 
uliit,y. For siriiplic~it,y we write t,he for111 appropriat,e to 110 
external rlwtmric, field E’” = 0. 

ruA+ = [Av A Bo + v A AB]” + (l/-yt,) [Ei(!ytL + E;]“’ 

I-lrre B:,” = (H,, = 0, Hz, Hp = 0) is the reference field in 
tlic‘ ttlediuII1 planr. xncl AB the field increment at (7’. s, z). 

( '. Almost Flat fic~lrl, AB = 0 

For t.hr alr110st~ flat magnetic field H:(p) = “i(p)@, 
whcrc, 03 is tile magnrtic~ fielcl at, t,he cyclotron centre, 
t.lic>rc is a single Lorcnt,z forr.e term expressil,le as AvABF~~. 

Sincbc, t.ittli, anal t#urns arcut-tiltlate equally, there is a sin- 
pIi> tr;tr~fcirrrlat ion I,rt,ween clrrivat.ivrs. Let B = wC f, SO 
OIIP turn c~c.lrres~~on~Is t,o 0 = 2~. linder t,hr ~tl’l.lroxirrlat,ioll 
“(I! = 5 (p) 1 the mot,ion equat,ions hrorr~c: 

(1,’ - s)’ = (l/w;)(Q/?nO) ,q(T, s, Z)/$ 

(s’ + 7’)’ = (l/w;)((1/?n”) E$ys,z)/y; , 

whr>rr t,he sllperfix prime denotes t,he derivative with re- 
Y~WC~, to radian-t,urns. 

ii. ,411 ~~~~~~~~~~ilrliltiorl for A l:tJ 

It is ii0 simpli~ matter t.0 final cqual,ions of motion in 
I hc nle(lian plane so as to describe a srlloot,h focusing due 
ten t,hfs c.c)llil)itt~ltirln of radiiil tirld gratlient,s and sectorptl 

azimuthal variaticjns of t,he magnet,ic* field. 
Ld t,lle angle formed I,et,ween radius vectors to the gen- 

f>ral and rcferenc-e part,iclcs be 8. We take a force propor- 
t.iollal an~1 p~rl)cnclicular t,o tdie ‘extra’ azimuthal velocit,y 
2.i’~ = .; (‘0s 0 - 1: sin B and to the ‘extra radial velocity 
At],, = 1: ro:, B+.ksin 0, at, point, (s, 7’) Thus we t,ake a focus- 
ilig for<-c FfOC,ll~V = nr[e,,Ave-DAUB,]. In terms of the carte- 
sim lmit vc>c,t,ors c?,, eS, WC tincl FjOCllS = rrl(e,.s - ei, 1”) ( 
:111(1 ~IIP sp’e-diarge t,erm Ft’ = C, F, + q.F,. Ilenre the 
rcluntions of Inotion are: 

(.s’ + l/r)’ = F,$ ) (T’ - us)’ = F, (3) 

Thtl radial hctntron t,une 11 is given by v = (~1 + 1). 
Thr>rc arr t,wo c.onstants of motion if Fs = F,. = 0; how- 
ever t,hc sl~ctl is not rxady conserved. These equations 
yieltl I>et,atron motion in t#he form of circles in the median 
l)lanc, which property lends itself to finding self-consist,ent 
111atdircl diarge (list ribut,ions under int,ei-nal space-charge 
f(orc-cs. Further, t,hese equat.ions are formally identical with 
t how l)resentctl Ijy Klcrven [(j]. 

III. STAIWNG ENSEMHLE 

The overall density of points (in real space) will 1~ the 
convolution of an elementary disc- composed of concentric 
rings of shortS vertical rods convolved wit,h the distril,ut,ion 
of disc- cent’res, which may be dist,ributetl homogeneously 
over a rectangular grid. Each part,ic*le point [s, r, s’, ~‘1 n~ay 
carry a different charge. 

A. lbfotrllcrl rltw?ltnl-y dL.Sc ~ 110 syo~e cl1c17TJe 

The elementary rnsenlhles are &cular in position anal in 
velocit,y spare, and matle as follows. From a uniforldy 11op 
dated disc (in Y, s-space) generate the correlated velocit.ies 
for betatron mot,ion according t,o 7’ = US and s’ = --1/r. 

n. Mntclwrl elrluri~tnry dz.sr - with .spnn -d~clyje 

It is desirable that elemrnt,ary diarge c~louds 1~ st atioll- 
ary under the action of t,tic internal space-charge fort-c; this 
facilit,ates comparison with the sphere ttlodrl in C’l( 3. 

The disc: consist,s of concent,ric- rings, and our Inatdiing 
scheme will IP to adjust, the velocity coordinat,es of l)art.i- 
cles on each ring so as to give a self-consist,cnt, tlist~ril,ution 
under spacedlarge. We lake a syst,em of loc*al polar co- 
ordinat,es (0, 8) with r’entrf at t,hc refercn(,e prtic,le, sue-h 
that, .s = pros Q anti 1’ = psin 0. The rqllation:: (3) IW~~OIIIP: 

p”-p(Q’)“+v(p8’) = F,, ; -2p’8’-pB”$1/,, = -F!$l. (4) 

Ilere F,,, Fo are t,he radial ant1 azimuthal (wit#h respect. 
to centrr of cloud) components of Fy We look for an 
equilil~rium circular solution of (4) with 8’. p = co7~stc~7~i.s. 
For the rods at, radius, p, the angular velocit,y 8’ is given 
by : 

W’(p) = v + d= 

The matched disc. is found as follows. (i) (iencrate a uni- 
formly populated disc. (ii) Numerically solve for t,he spa(‘e- 
charge forces rS, Fr and t,raasform t,o F,,, Fo. (iii) Ring I)y 
ring evaluate B’(p). (iv) ( irnerate t,he c-orrelated velocities 
according to 1” = Q’s and s’ = -8’ )‘. 

IV. EXAMPLE (‘ASES 

The mutual forces I>rlt,wcen t,he elementary dlarge cliscs 
are not compensated for anal will cause a pert,urbation of 
the matched circular het,at,ronic motion and also cause t,he 
cloud centres to IIIOVC. These effectas were st,udied for a 
coasting beam in F’S1 Injector II. All cases are for a 1 111~4, 

5 MeV barn with vertical height 2 IIIIII. The integration 
algorithm is a fourth order time explicit Runge-Kutta in- 
tegrator, used with a 0.05 turns integration step size and 
the program working fully in double precision. 

Fig. I: A round startming distribution, not, matched 11~ 
der space-charge, of one rentrp and 5000 needles in a sin- 
gle cloud remains round, but “breathes”, expanding and 
shrinking; it performs a monopole mode oscillation. Plot,- 
ted are the r.m.s. radial and azimut8hal width as a fundion 
of turn Ilurnbcr. The oscillation frequency is lower t8han vIj 
due to space c-hargc forces. This beam has a longit~udinal 
rxt,cnsion only from coupled radial-lotlgitlldirlal I)rt,at,ron 
oscillations, but, 710 phasewidth 
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Fig:. 1: Ittitial ttntrtat,ched, round ettscmhle. Fig. 3: f’I( :h’ sirtlttlat,iotl of 15’ pltaw widimh IK~~JII 

Fig. 2: R;ttli;tl an11 azitttttt,hal r.1.11,s. width of a I~ttttc-h of 
7.5 degree ittit,i;tl phase widt,h, showing the increase of the 
r;uiial wi(ltlt anal the cicc.rease (if t,ltc azitrtuthal widt8h fol- 
lowecl Ijy it SttliLll, slow rise towarcls a COr~lt11011 Value for 
I~c,th wiclt,hh at, a round beam (SPCI~ from t,lic top); rather 
it ‘tlisk’ t,han a IdI as the height, is 2 mm. 

Radial and Azimuthal Width 
IO 

1 
of Initially Elongated Beam Pulse [mm] 

l?I$pa ’ 1 I 
Radial Dirdioon 

Fig. 4: F’I(!S simttlatiott of 15” phase width I)P;UII. 

Radial and hrimuthal Width of Round Beam Pulse Imml 
10 

8 
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Turn Number of cOastin Rearm 

Fig. 2: Ittit,i;d utttttatc-bed, oblong ensemble. 

.l’lic ittit,ial ittuease of radial width ant1 derrease of az- 
iltrttt,ltaI witlt,lr arises from rot,ation of t,hc I~unclt. At an 
uqgl~ of W of t,hr rotation, t,he beam is wider in t,he ra- 
(lid clirect,iott t,hatt itt t,lte azimuthal one. As this rot~at~ion 

0 /--- /-v 1-T7---1 -- s---r-- -I--- 
0 2 4 6 8 10 l2 14 16 18 20 

Turn Number of Coastinu Beam 

Fig. 5: Initial mat dlctl, routt(l etthe~t~l~le. 

c’itrrt(5 1-111. it slows down wit,h t,he approadl of the two 
wiclths ~owartls t,ttc tttatc*hed (‘asp at, ahout. 75% of the ini- 
t,iill lengt ti. The iriit,ial rot,ation is faster t.hatl t,hc 15’ case. 

Fig. 3: ‘I’he l’I( ‘X sitrtllla~,ion shows five sucY.essive to]) 
vietv2.h of it I)ltrtc~l~ with ittitial lbhase witll,h 15’ (Injector II 
is utt 10th ttarrrtonic-) on t,rtrii tirtml~crs 0, 2, 4, tjl 8. 

Fig. 4: ‘l’lte same case as PI( :N, but, wit It the earlier pro- 
aritttt F’I( ‘S. It, really looks quit,e similar t,o previous case; 
ttii‘ I)as;ic- ttie(,hattisttt of forming ati S-shape and then grad- 
ually a galaxy-like tlistribut,ion is present, in hot,h models. 
Flowevcr, the clcfortriatiott is generally al)out, ‘20 to 25 per- 
c,ctlt. weaker for t,hc needle model PI( :N. 

Sit1c.e it is c.lrar t.hat, the pttettomctta are Itasic-;tlly ttlis- 
ttt;it.(-ltittg, t,ltc itt18ctrest.ittg qttfdiott is whether a routid 
c-ltarge rlist,rihrtt.iotl (not. ttrcY3sarily a sl)herl>) is st,alIle (i.e. 
tri;ttdte~I). ‘l‘hc~ l,est, wits a ‘flyittg saurer’ wit,11 an r.m.s 
wi~lt,lt of x I~IIII azitt~ttt~ttally ancl radially. This case, Fig. 5, 
dtvws almc~st c,ottstant, radial and azirnut,hal width over 
tttany turns. Frorrt t,hc way Ihe c,ctttres are init,ializetl it was 
ii lit,t,lc .squarisli at. t,lie heginning, and so proIdly this 
CXSP did not have a l>rec*ise mat<-hing; t,herefore it shows a 
st~tall part ial tiionopole mode as well. 
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