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Abstract

This paper describes a beam dynamics code ‘PICN’ for
simulation of high current proton beams in an isochronous
azimuthally-varying-field cyclotron. {t is assumed that the
median plane and vertical motions are decoupled, so that
the internal space-charge forces can be calculated by a
particle-in-cell method applied to the median plane charge
distribution. We assume operation in a regire where verti-
cal focusing is not weak. This paper details the simulation
method and approximations, including a surnmary of the
equations of motion. Results of the code, when applied to
the P.S.1. Injector 1l cyclotron are presented, and compared
with results from an earlier code that treated the beam as
composed of a distribution of rigid spheres.

[. INTRODUCTION

Asx has been noted by several authors [1] [2] [3], space-
charge is important in isochronous cyclotrons for the fol-
lowing reason: there is no longitudinal focusing and there is
strong radial-azimuthal coupling. Because the space-charge
electric fields are severely non-linear, practical investiga-
tion must proceed by numerical methods [4] [5].

The original code ‘PICS’ [3] considered the beam to be
forined of charged spheres, and completely neglected the
internal motions within these spheres. The main argument
to justify this simplification was that the betatron oscilla-
tions are much faster rmovements than the deformations of
a hearn bunch due to space charge forces.

The new simulation code, to be called PICN, assumes
that the radial and the vertical betatron motions are de-
coupled, just as in the code PICS. However, the median
plane internal motions within a charged sphere are now
to be included explicitly. The sphere is decomposed into
cylinders and the cylinders are divided into vertical rods
or needles. There are now new freedoms in the motion: rods
within the same initial sphere need not have the same cen-
tre nor the same oscillation frequency, and individual time-
dependent modulations of tune and betatron amplitude are
now allowed. The new model assumes that all needles have
the same, fixed height; i.e. the spheres are replaced by full
cylinders. The artificial force law used in PICS is replaced
by the force between two uniformly charged vertical rods.

A.  Elementary force law between two needles

(lonsider two parallel rods of length 26 separated by a
distance a with charges 1 and Q2 respectively. Then the
mtual repulsive foree is

Dl By — Ql x QE EYRY 2
Fla.b)= 2mep a(2b)? [ (26)* 4 a -a]
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II. MOTION EQUATIONS IN THE LABORATORY FRAME

The centre of charge (and mass) moves with velocity u.
An arbitrary particle in the bunch has some velocity v. We
should like to find an equation for & (v — u). We use the
energy equations to eliminate the time derivatives of the
~y-factors from the momentum equations. For the reference
particle: moyudu/dt = Fi¥ — u(u-Fy7)/c?. For the
general particle: mgy,dv/dt = F3° + F7—v[v-F7]/c?.
where F3° = F*° — v[v - F*7]/c* . F*" is an externally ap-
plied force due to magnets and cavities, say. F** is the force
due to space-charge; i.e. from the whole asserbly of which

the ‘test’ particle is a memnber.
A.  An expression for space-charge force

The space-charge term can be expressed in terms of the
Coulombic electric fields, due to the assembly of particles,
as measured (or calculated) in the frame co-moving with
the centre of mass of the group. We now define || and L to
mean parallel and perpendicular to u. Let the electric field
be E, in a frame which is co-moving with u. It is assumed
that in this rest frame (of the bunch) there is an electric
field E., but no magnetic field B{,. The electric field is
resolved into components transverse and longitudinal to
the reference motion: B = E/| + E|'|. In the laboratory
frame the space-charge force on a test particle is:

F*“ =y [Eil + 7 E| + v/\(u/\E'dL)'yu/(‘?] . (1)

The vector vA (uAE/ ) occurring in the space-charge force

term, F*° equation (1), is perpendicular to v and so the

magnetic field due to the beam cannot alter the energy.
We now substitute v = v +v, = u+ Av and note that

Uy ) Av

! se / ’ i ) ’
CF = (B + 3EL) (1 - 20 - SR E v EY)

(2)
is an exact expression. Now, to first order (1 — mv“/vz) ~
I /44 = 1/9, . Also note that the final terr of (2} in Av/e?
is negligible. Hence, now approximately,

= (a/n) [EL + Ej/

B. Ezplicit Representation

We acknowledge the cylindrical symmetry of the cy-
clotron applied E* and B” fields, and adopt cylindrical
polar coordinates (p, ¢, z) for the reference particle posi-
tion xo = pe,(¢). We note that with space-charge there
are preferential directions parallel and perpendicular to u,
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and take a local cartesian (rectangular) coordinate sys-
tem (7, s, z) for the position vector of a general particle,
X = Xo +e,r +eygs + e, z. The velocity increment is

Av = (r—sdle, + ($+rdley, + e,z .

@ 1s a reference coordinate, and we specify this to be
isochronous so that it rotates at constant angular veloc-
ity ¢ = we = (¢/my)BY. In this case,

Av=e,[i — 28w, — wlr] + eg[5 + 2w —w?ls] + e, .

We must compare the above identity for acceleration with
the equation for forces. For brevity, we set (q/mg) equal to
unity. For simplicity we write the form appropriate to no
external electric field E°F = 0.

sc
711‘3\.’ = [AV ABg+vA zﬁ]f;]e;U + (1/')%;) Efl/')’u + EI_L] .

Here B = (B, =0, BY, By =0) is the reference field in
the medium plane, and AB the field increment at (r, s, z).

. Abmnost Flat field, AB= 0

For the almost flat magnetic field B2(p) = ~(p)BY,
where B” is the magnetic field at the cyclotron centre,
there Is a single Lorentz force term expressible as AvABS.

Since tirme and turns accumulate equally, there is a sim-
ple transformation between derivatives. Let 8 = w.{, so
one turn corresponds to 6 = 27, Under the approximation
Yo = ¥{p), the motion equations become:

(" =) = (1/w)g/mo) EL(r,s,2) /72
(5 40) = (/) g/ mo) Ei(r,s,2)/43

where the superfix prime denotes the derivative with re-

2

spect to radian-turns.
Do An approximation for AVE

It 15 no simple matter to find equations of motion in
the median plane so as to describe a smooth focusing due
to the combination of radial field gradients and sectored
azimuthal variations of the magnetic field.

Let the angle formed between radius vectors to the gen-
eral and reference particles be §. We take a force propor-
tional and perpendicular to the ‘extra’ azimuthal velocity
Avg = scosf — #sinf and to the ‘extra’ radial velocity
Av, = reos 0+4sin§, at point (s, 7) . Thus we take a focus-
ing force Froos = mle,Avg—egAv,). In terms of the carte-
stan unit vectors e, e,, we find Frocus = mle s’ — egr'),
and the space-charge termi F3° = e, F, + e, F.. Hence the
equations of motion are:

(5" +vr) = F, | (' —ws) = F . (3)

The radial betatron tune v is given by v = (m + I).
There are two constants of motion if Fy = F, = 0; how-
ever the speed is not exactly conserved. These equations
vield betatron motion in the form of circles in the median
plane, which property lends itself to finding self-consistent
matched charge distributions under internal space-charge
forces. Further, these equations are formally identical with
those presented by Kleeven [6].

ITI.  STARTING ENSEMBLE

The overall density of points (in real space) will be the
convolution of an elementary disc composed of concentric
rings of short vertical rods convolved with the distribution
of disc centres, which may be distributed homogeneously
over a rectangular grid. Each particle point [s, 7, s/ r'] mnay
carry a different charge.

A, Matched elementary disc — no space charge

The elementary ensembles are circular in position and in
velocity space, and made as follows. From a uniformly pop-
ulated disc (in r, s-space) generate the correlated velocities
for betatron motion according to ' = vs and & = —pr.

B, Maltched elementary disc - with space-charge

It is desirable that elementary charge clouds be station-
ary under the action of the internal space-charge force; this
facilitates comparison with the sphere model in PICS.

The disc consists of concentric rings, and our matching
scheme will be to adjust the velocity coordinates of parti-
cles on each ring so as to give a self-consistent distribution
under space-charge. We take a systemn of local polar co-
ordinates (p, §) with centre at the reference particle, such
that s = pcos @ and r = psin@. The equations (3) become:

P =p(0) (pf) = F,y =200 = pf" vy = ~Fy. (4)

Here F,, Fy are the radial and azimuthal (with respect
to centre of cloud) components of F5° . We look for an
equilibrium circular solution of (4) with 8, p = constants.
For the rods at radius, p, the angular velocity # is given

by:
20'(p) = v+ /vE—4F,/p.

The matched disc is found as follows. (i) (ienerate a uni-
formly populated disc. (ii) Numerically solve for the space-
charge forces Fy, I} and transform to F,, Fy. (iii) Ring by
ring evaluate ¢'(p). (iv) Generate the correlated velocities
according to » = 6’ s and s’ = —8' .

IV. EXAMPLE CASES

The mutual forces between the elementary charge dises
are not compensated for and will cause a perturbation of
the matched ecircular betatronic motion and also cause the
cloud centres to move. These effects were studied for a
coasting beam in PSI Injector I1. All cases are for a [ mA,
5 MeV beam with vertical height 2 mm. The integration
algorithm is a fourth order time explicit Runge-Kutta in-
tegrator, used with a 0.05 turns integration step size and
the program working fully in double precision.

Fig. 1: A round starting distribution, not matched un-
der space-charge, of one centre and 5000 needles in a sin-
gle cloud remains round, but “breathes”, expanding and
shrinking; it performs a monopole mode oscillation. Plot-
ted are the r.m.s. radial and azimuthal width as a function
of turn number. The oscillation frequency is lower than v,
due to space charge forces. This beam has a longitudinal
extension only from coupled radial-longitudinal hetatron
oscillations, but no phasewidth.

3640

PAC 1993



?.I/v\/ VaVaV,

3 4 5

Radial Width of Round Beam Pulse [mm)

6‘ -

2 N

ol

0 :

5

3 4
‘Turn Number of Coasting Beam
Fig. 1: Initial unmatched, round ensemble.
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Fig. 2: Radial and azimuthal r.m.s. width of a bunch of
7.5 degree initial phase width, showing the increase of the
radial width and the decrease of the azimuthal width fol-
lowed by a small, slow rise towards a common value for
both widths at a round bearn (seen from the top); rather
a ‘disk’ than a ball as the height 1s 2 mm.
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Fig. 2: Initial unmatched, oblong ensemble.

The initial increase of radial width and decrease of az-
imuthal width arises from rotation of the bunch. At an
angle of 90° of the rotation, the beam is wider in the ra-
dial direction than in the azirnuthal one. As this rotation
carries on, it slows down with the approach of the two
widths towards the matched case at about 75% of the ini-
tial length. The initial rotation is faster than the 15° case.

Fig. 3: The PICN simulation shows five successive top
views of a bunch with initial phase width 15° (Injector 11
is on 10th harmonic) on turn numbers 0, 2, 4, 6, 8.

Fig. 4: The same case as PICN, but with the earlier pro-
gram PICS. It really looks quite similar to previous case;
the basic mechanism of forming an S-shape and then grad-
nally a galaxy-like distribution is present in hoth models.
However, the deformation is generally about 20 to 25 per-
cent weaker for the needle model PICN.

Since it is clear that the phenomena are basically mis-
matching, the interesting question is whether a round
charge distribution (not necessarily a sphere) is stable (i.e.
matched). The test was a ‘flying saucer’ with an r.am.s
width of 8 mun azimuthally and radially. This case, Fig. 5,
shows almost constant radial and azimuthal width over
many turns. From the way the centres are initialized i1t was
a little ‘squarish’ at the beginning, and so probably this
case did not have a precise matching; therefore it shows a
simall partial monopole maode as well.
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Fig. 3: PICN simulation of 15° phase width bean.
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Fig. 4: PICS simulation of 15° phase width beam.
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Fig. 5: Initial matched, round ensemble.
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