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Abstract 

TOPKARK is a beam optics program consisting of two 
Fortran codes developed in parallel: a 3-D high-order mapping 
code and a particle tracking code; both utilize a space charge 
model which treats the particle bunch as a uniformly-filled 3-D 
ellipsoid. The map code uses the differential algebra library 
DA [ 1] to generate an arbitrary-order Taylor map describing a 
given lattice, then the Lie algebra library LIELIB [2] is used to 
obtain the Dragt-Finn factorization [3] of the corresponding 
Lie polynomial. The Lie polynomial generated by TOP- 
KARK without space charge has been successfully bench- 
marked through third order against MARYLIE 3.0 [4] and 
through fifth order against TLIE [5]. With space charge on, 
TOPKARK generates a linear map that agrees well with 
TRACE 3-D [6]. The tracking code uses a symplcctic integra- 
tion scheme [7] when space charge is off, and it includes a 
more general space charge model [8] which assumes only el- 
lipsoidal symmetry of the spatial distribution. 

1. GENERAL FEATURES OF TJXE CODE 

TOPKARK has evolved from an earlier code, which was 
developed during a collaboration between Grumman, LBL and 
BNL [9]. The mapping version is a useful design tool, while 
the tracking version is a useful diagnostic which resolves any 
ambiguities regarding very high order effects that might be 
missed by Lie algebra or mapping codes and is also required 
for dynamic aperture studies. 

A. Mapping Version 

TOPKARK employs a fourth-order, adaptive-step-size, 
Runge-Kutta integration scheme [lo] which provides good ac- 
curacy and reasonable computational speed. The differential al- 
gebra library DA [l] is used to generate a high-order Taylor 
map expansion of the dynamical variables about the design tra- 
jectory (in practice up to fifth order has been used) step by 
numerical step along the length of the lattice. This map is 
used to propagate the spatial moments of the (assumed) initial 
particle distribution from one integration step to the next. 

At each integration step, a 3-D uniformly-filled ellipsoid is 
constructed according to the calculated spatial moments. The 
exact linear electric fields associated with this ellipsoid are cal- 
culated 11 I] and, in combination with any magnetic fields, are 
used to advance to the next step. At the end of the lattice, the 
final Taylor map is used to calculate the emittance and Twiss 
parameters of the final distribution. The Lie algebra library 
LIELIB [2] is used to obtain the Dragt-Finn [33 factorization 
of the Lie polynomial corresponding to this final Taylor map. 
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The code includes two optimizing routines, one based on 
the downhill simplex method [lo] and another based on 
Powell’s method [ 101. Either of these algorithms can be used 
by a matching routine that sets the final transverse Twiss pa- 
rameters to specified values by modifying any four of the lat- 
tice parameters. This matching routine has been successfully 
used both with and without space charge. 

Another type of matching routine, which can also use ei- 
ther of the optimizing algorithms, is used to zero specified 
terms in the Lie polynomial, sometimes while simultaneously 
satisfying other imposed constraints. For example, 
TOPKARK can determine the required strengths of three (or 
more) octupoles in order to eliminate third-order gcomctric 
aberrations. 

B. Tracking Version 

This version currently exists as a test-particle tracking code 
which integrates the full equations of motion, using a 
Hamiltonian formalism and an explicitly symplectic fourth- 
order integration scheme [7]. The code has been used and 
tested extensively: in particular, Ihe second moments obtained 
at the end of example beam lines often agree well with the 
second moments propagated by the mapping version. 

TOPKARK can generate a six-dimensional phase space el- 
lipsoid of initial conditions, which yields the desired Twiss pa- 
rameters in each of the Iwo-dimensional phase planes, 
Distributions currently supported include a) uniformly-filled 
ellipsoid in space with gaussian distribution in momentum 
and b) gaussian distribution in space and momentum. The 
code can also read in a file of initial conditions for tracking, 
and it oulputs the Twiss parameters and particle positions as 
desired. 

Three distinct space charge models (described below) are be- 
ing implemented in the uacking version of TOPKARK. Each 
imposes ellipsoidal symmetry on the spatial distribution. The 
Hamiltonian formalism and symplectic integration will be 
abandoned for space charge calculations--the equations of mo- 
tion and the fourth-order adaptive-step-size Runge-Kutta [IO] 
integrator of the mapping version will be used. 

C. Features Common to both Versions 

TOPKARK currently implements a number of “hard edge” 
or uniform-field magnet elements, including a dipole (i.e. a 
normal entry and exit sector bend) and quadrupole through 
duodecapole. Also available are “thin fringe” elements for 
dipole and quadrupole magnets. All of these elements, includ- 
ing the fringe fields, have been successfully benchmarked 
against MARYLIE 3.0 [4] through third order. The fringe 
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field models, although calculated independently, were based on 
ideas developed previously by Forest [ 121. 

TOPKARK also employs one extended-fringe magnet 
model. This is a line-dipole model for large-bore magnets 
constructed from a cylindrical array of magnetized rods, includ- 
ing quadrupole, octupole and duodecapole configurations [ 131. 
TOPKARK was successfully benchmarked against TLIE [S] 
through fifth-order in a single test-case where these extended- 
fringe quadrupole and octupole models were used. New elc- 
ment types are easily added to the list above. 

Both codes use MKS units, with all momenta normalized 
to the longitudinal design momentum PO. We define the lon- 
gitudinal variables ST=c(t-to) and Sp,=(Eg-E)/pgc, and the 
magnetic rigidity Bp=po/e. For straight clcmcnts, the equa- 
tions of motion are: 

calculating the fields: ??zg=y$z~. This reduces the particle 
density: nB=nyjyg, so ExB, EyB, EzB are all reduced by a 
factor yo from what one would naively calculate in the lab. 
However, the fact that the distribution is stretched out in z ef- 
fectively increases the value of EZB by yo at the position of 
each particle, thus negating the decrease in Ed noted above. 
This stretching of the bunch also alters the geometry of the 
distribution, which affects the values of all three components 
of EB accordingly. 

Particle velocities are neglected in the bunch frame, so the 
Lorentz transformations yield: 

EL” = EB” ; EL’ = EBL ; (44 

BL” = Bg” = 0 ; BL’ = ~0 Bg X El& . W 
&L&L d4I=.b. d&=1 1. 
dr -pz’ & pz’ 6 pz-p,l 

,,Ia) The Lorentz force equation is: 

iFL=EL+vxBL. (44 
- =---- z - By + &x eft- ; (lb) Combining these results yields an effecfive electric field: 

EL eff = EB” + EB’/yo . WI 
(I’) This is the quantity used to advance the particles. The longi- 

tudinal field is altered by geometric effects only, while the 

FY. 
transverse fields are also reduced by a factor of yo2. 

Ex eff + pz Ey eff + Ez cff . wo A. Mapping Version 

The electric field components E, eff, etc. include the sclf-mag- 
netic field of rhe particles and relativistic effects (see below). 
The corresponding equations of motion for bending elemems 
have been given elsewhere [14]. 

II. SPACE CHARGE MODELS 

We consider only models with ellipsoidal symmetry, 
meaning that the spatial density distribution has the form 

p(x, y, Sz) = PO f(u) I cw 
where the function u(x,y,&z) is defined by the equation 

(2-b) 

with a2=cx2>, etc. Thus the one-parameter family of 3-D el- 
lipsoids defined by Eq. (2b) are isodcnsity contours. 

Such models yield electric fields of the following form (for 
all points wihin the distribution) [15]. [8]: 

TOPKARK works with a Taylor-series expansion about 
the design trajectory, so Lhe obvious question arises: How 
then does one propagate a particle distribution down the bcam- 
line? This has been explained in d&l clsewherc [14], but es- 
sentially one calculates the second moments at a given point 
in the lattice by using second and higher moments of the ini- 
Gal distribution. 

Of course, we must assume a convenienf initial distribu- 
tion function, and one that is consistent with our assumption 
of a uniformly-filled 3-D ellipsoid in space. Such a distribu- 
tion has been found and implemented [ 141. The projection of 
this distribution in the x-px plane has the form: 

g(x*Px) = 3 (l-&J 45 &x 

ex+&@x+zx)2] 1 (5) 
co 

E,B=zabcx ds s mx,y,w for x2<%xpx (otherwise, g=O). We are using RMS Twiss pa- 
(3) rameters, which means that <x~>+J~~ , <xp,>=-&a,, and 

0 
(a2+s)3’2 (b2+s)“2 (c~+s)~‘~ ’ <px2>=~xyx. The linear bunch frame electric fields can be 

found analylically in terms of complete elliptic integrals [ 111. 
with analogous results for EyB and EZB. These electric fields 
are calculated in the bunch frame, then relativistically trans- B. Tracking Version 

formed to the laboratory frame. Three distinct space charge models are being implemented 
The length of the bunch as observed in the lab frame is in the tracking code. One assumes a uniformly-filled ellipsoid 

shortened due to relativistic length contraction, so the lab in space, for which f(u)=l. Another assumes a gaussian ellip- 
frame distribution is first stretched out in the z-dir&on before soid in space, for which f(u)=exp(-u2/2). The third is a more 
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general scheme developed by Gamett and Wangler [8] in which 
f(u) is Fourier expanded. 

The uniform model will start with the same distribution 
function as is assumed by the mapping code. This general 
form will continue to be imposed on the actual particle distri- 
bution, with only the second moments being determined di- 
rectly from the particles. The extent to which this imposed 
form is actually preserved by the particles will provide a direct 
check on the validity of the mapping code. 

For particles within the bounds of the assumed 3-D ellip- 
soid, the purely linear space charge forces can be found analyt- 
ically in terms of complete elliptic integrals [l I]. For those 
few particles outside these bounds, the now-nonlinear fields 
can be calculated analytically in terms of incomplete elliptic 
integrals [I I], requiring the phase-like quantity h, which is the 
real positive root of the following equation: 

x2 y2+8,2=l 
5a2+h+ 5b2+h 5c2+h * (6) 

The gaussian model has been used previously [15], al- 

The algorithms used by TOPKARK cannot follow the de- 
velopment of any structure within a bunch (unless, in the cast 
of the Garnett and Wangler scheme, such structures preserve 
ellipsoidal symmetry), such as might arise due to plasma 
waves or instabilities. Thus the transit time through a lattice 
should not be much longer than a plasma period [ 171. 

IV. CONCLUSIONS 

The mapping version of TOPKARK is a tested and reliable 
high-order optics code in which a TRACE3D-like space charge 
model has been successfully implemented. Implementation of 
three distinct space charge models--uniform, gaussian and more 
general--into the tracking version is currently under way. 

Used in a complementary fashion, the mapping and track- 
ing versions of TOPKARK will provide a unique tool for in- 
vestigating basic physics issues associated with space charge. 
These codes will also serve as powerful design and diagnostic 
tools for high-brightness beam optics applications. 
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strong nonlinear components. The extent to which an initial 
gaussian distribution is preserved and the extent to which the 
results of this model differ from those of the uniform model 
will help to clarify the relative importance of how one models 
the beam distribution for high-brightness high-order beam op- 
tics applications. 

For the more general scheme of Garnctt and Wangler @I, 
f(u) is left arbitrary. One Fourier expands f(u), obtaining the 
expansion coefficients directly from the particle positions. It 
was shown [8] that keeping the first six terms of the expan- 
sion is probably adequate. Again, ten-point gaussian quadra- 
ture will be used to evaluate the electric fields. 

III. DISCUSSION 

The mapping code has already demonstrated [ 141 that three- 
dimensional space charge forces cause a new class of geometric 
aberrations to appear. These aberrations result from the intro- 
duction by space charge of an asymmetry in the longitudinal 
variable 6~. This result is contrary to the physical intuition 
developed from the use of linear codes with 3-D space charge 
models and high-order optics codes with 2-D models. This 
result was partially confirmed [I41 in a given example by 
comparison with the PARMILA code, and the results are con- 
sistent [14] with analytic considerations based on a Green’s 
function approach to estimating nonlinear effects [16]. 

Our approach is faster and simpler than a particle-in-cell 
(PIC) or point-to-point particle code, and it is free of the 
strong numerical noise associated with such codes. On the 
other hand, because we impose a smooth form on the distribu- 
tion, we must be in a regime where the combined field of the 
particles is predominantly smooth and individual collisions are 
a secondary effect. This condition is generally satisfied [17] if 
there are many particles within a Dcbye sphere. 
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