
A MATRIX THEORY OF THE MOTION OF AN ELLIPSOIDAL 
BUNCH IN A BEAM CONTROL SYSTEM WITH A RECTLINEAR 

OPTICAL AXIS AND WITH SPACE CHARGE 

Alexander Dymnikov 
Institute of Computational Mathematics 

Ragnar Hellborg 
Department of Physics 

University of St. Petersburg 
Stary Petergof 198904 

St. PETERSBURG, Russia 

University of Lund 
SGlvegatan 14 

S-223 62 LUND, Sweden 

ABSTRACT 2 THE COORDINATE SYSTEM AND 
The motion of a 3-dimensional ellipsoidal bunch of 
charged particles in an arbitrary external electromag- 
netic field is considered taking into account the effect 
of space charge. The first approximation of the electro- 
magnetic field within the bunch due to space charge has 
been found. The nonlinear matrix equation in the en- 
velope variable space is written. An effective recursive 
computational method for the solution of the nonlinear 
beam envelope evolution is proposed. 

NOTATIONS 
The motion of the particles of a bunch is described rel- 
ative to a single particle, the reference particle, which 
follows a reference trajectory. The equations of mo 
tion and of the 4-vector electromagnetic potential A 
are written in a coordinate frame 2, moving with the 
reference particle. All symbols and notations in this 
paper will follow the same conventions as used in ref. 
[7]. The coordinates of the reference particle are de- 
scribed by the four vector 2,. This is chosen such that 
zml = .zm2 = 0, z,4 = ci,. In this paper we restrict 
ourselves to first-order (paraxial) focusing with a rec- 
tilinear reference trajectory z = t(l,,,). An arbitrary 
particle is described by a $-vector I, where the com- 
ponents of x are the deviation of any particle from the 
reference particle [7]. H ere x1 and x2 are the trans- 
verse coordinates, 2s is the longitudinal coordinate and 
x4 = c(t -t,,,), i.e. the time coordinate. All the particles 
in a bunch are detected at the same time 2 = t,,,. This 
means that the observer is located in the plane x4 = 0 
and that 24 = 2,,,4 = ct,. 

1 INTRODUCTION 
A time-varying field can be used for the transverse focus- 
ing of particles and in some cases a high-frequency focus- 
ing system can be constructed more simply and cheaply 
than a strong-focusing system [l]. The possibility to use 
a high-frequency focusing field in nuclear microprobes [2] 
opens up possibilities for the analysis of high-frequency 
or rapidly moving processes. Most advanced accelera- 
tor and microprobe applications require high-brightness 
beams [3]. In some cases -like a narrow beam through 
the whole system or a very bright beam- the beam is 
dominated by space-charge forces throughout the entire 
system from source to target. 

In this paper the electromagnetic field inside a beam 
bunch due to the space-charge is presented. The parax- 
ial, nonlinear equations of motion of this bunch in an ar- 
bitrary external electromagnetic field, as well as a new, 
recursive technique for solving these equations, have 
been constructed and are presented. A more detailed 
report on this theory is to be found in [4]. In two recent 
papers [5] and [6], this theory has been applied to a spe- 
cial case with an infinitely long beam (i.e. a DC-beam) 
and with an elliptical beam cross-section in a static elec- 
tromagnetic field. 

The quantities B, E, p, I and j denote magnetic field 
induction, electric field strength, charge density, beam 
current and current density, respectively. The quantities 
p and y denote momentum and total energy of the ref- 
erence particle. The 3-dimensional vectors B and E are 
expressed in the inverse of the units used to measure z 
and z ( i.e. m-i). The 4-d imensional vector A and the 
quantities y, p and I are dimensionless. The quantities 
p and j are expressed in mv2. 

As notated above, z4 = 0. Therefore, instead of the 
notation ;C for the three dimensional vector, we will use 

for convinience the notation 2, i.e.iY = 

0-7803-1203-l/93$03.00 0 1993 IEEE 3618 

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993



The following notations are also used: c2 

x’ = * 
d.w ’ 

d {x} = dxldx2dx3, d {x’} = dx’,dx;dx; 

2; = x’ 1, 4=x:, %; = %A, + x$, %: = 1 

3 THE ELECTROMAGNETIC PO- 
TENTIAL A INSIDE THE ELLIP- 
SOIDALBUNCH DUET0 THE SPACE 
CHARGE 

Let us consider the motion of a bunch of particles which 
is the canonical central, 3-dimensional ellipsoid a(x). 
This ellipsoid is described by the following equation: 

4 4 4 
050(x)=~+~+-Z<1 

a3 
(1) 

Here al, a2 and ~43 are functions of ~~4. 
The 4-vector potential A is written in the form: 

A (2, ~n4) = 
J 

j (7(x*), t,q - 2*x*) d {x’} 

WC* 1 47r& - 2*) (x - x*) 

We suppose that the bunch of particles in the space 
(x’) is also the canonical, central, 3-dimensional ellip- 
soid. Therefore Al = 0 and A2 = 0. 

Let a, 6, c be any three unequal, positive, real num- 
bers which we suppose to be arranged in descending or- 
der of magnitude: 

a>b>c>O 

where: 
Q =max ei, C =min ei, 

i i 

b=ai, ifaifaandaifc 

Assuming that p = pm is constant inside the ellipsoid 
we obtain the components A3 and A4 in the following 
forms [S]: 

where: 

A3 = ;P& A4 = pmlli 

II, = f (MO - MIX’4 - M2x5 - M3xZ) 

MO = d&F(O.Ic) 

M2 = -/&F(d,lc)+ 
ahmE (4, k) _ (2) 
(u2 - b2) (b2 - c”) 

b2 - c2 

M3 = - (b2 _ c2;b;m E (‘I ‘) + b2 “_’ c2 

#=arccosC, k= 
a 

a2Ml + b2M2 + c2M3 = MO 

Here F($J, k) and E(qi, k) are incomplete elliptic inte- 
grals of the first and the second kind. 

Using the expressions for A we obtain, in the first ap- 
proximation, the following expressions for the electro- 
magnetic field inside the elliptical bunch of particles due 
to the space charge: 

BI = -Ep,,,M222, B2 = &M,xI, B3 = 0 
7 Y 

El = P~MIXI, E2 = ptnM222, E3 = pmM3x3 

4 PARAXIAL EQUATIONS OF MOTION 
The motion of the elliptical bunch of charged particles in 
arbitrary space-time is described by the following parax- 
ial equation: 

y’=Py (3) 

where: 

P P 
Yl = Xl, y2 = x2, y3 = x3, y4 = -1’1, y5 = -.x;, 

PO PO 

cik=o, i#k, Cl1 =C22=E, C33=P3 
P Pi 

vkB,,,l+~VkE,,,2+s(k,2)~M2 (4) 

F3k = p% (v&n3 + 6(x: 3)~ 
P5Y 

, m M3) 

&k = 0, k = 1, 2, 3; D12 = -D21 = + 
P 

D31 = &TV,, , D,3 = -3 E 
YP6 Pd 

ml, 032 = pdE,2 
YP6 

D23 = -& 
P;t 

m2 
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Here B and E are external electromagnetic fields and 
po is the initial value of p at z,4 = 7~~40. The Kronecker 
delta is defined as 6 (i, j) = 1 if i = j and 6 (i, j) = 0 if 
i # j. Assuming that the charge of the bunch is given 
by: 

Q=j 4 

n(z) 
p’dxldxzdx3 = ;jnalaza~ph 

we obtain: 

P:, = 
I I 

$7rala2agu 
=- 

kj rabcu 

where v is the frequency of the beam current impulses. 

5 THE RECURSIVE a-h4ETHoD OF 
SOLUTION 

The solution of the matrix equation of motion eq. (3) is 
written in terms of the matrizant in the form: 

Y=RYO, Ro=b 

where R is a 6x6 matrix, 1s is a 6x6 unit matrix and 
Ro and yo are the initial values of R and y, resp. A 
continuous, generalized, analogue of the Gauss brackets 
or the method of shuttle integrals, refs. [2] and [9], can 
be used to calculate the matrizant for an arbitrary coef- 
ficient matrix P(zm4) with rigorous conservation of the 
phase volurne of the beam at each stage of the calcula- 
tion. 

We are considering the bunch of particles which is the 
g-dimensional ellipsoid in phase space. It is convenient 
to use the envelope matrix 6, where: 

u = Ra,,ji 

Here R is the matrizant and u is the matrix charac- 
terizing the shape of the initial 6-dimensional ellipsoid 
in the phase space. We note that: 

611 = a? (~~4)) 822 = ai (h4), 633 = 4 (h4) 

u44 = (jplmax)27 us5 = (;x;max)2 

666 = ($x;max)2 
where x[i max is the maximum value of xi in the phase 

set with an ellipsoid boundary. 
The matrix u satisfies the differential equation: 

u’=Pu+uF 

where the coefficient matrix P is described by the eqs. 
(4). It is to be noted that the matrix P depends of the 
elements 611, ~22 and ~33. 

6 SUMMARY 
We have considered the motion of the 3-dimensional el- 
liptical bunch of particles in an arbitrary, external, elec- 
tromagnetic field, taking into account the effect of space- 
charge. The space-charge effect is important for a high 
beam current I, for a bunch of small volume and for 
beam current impulses of low frequency u. In the first 
approximation we have found the electromagnetic field 
inside the bunch due to the space charge. This is given 
in eq. (2). A new recursive technique has been proposed 
for the solution of the non-linear equations of motion in 
the first approximation, given by eq. (3) where, in each 
step of the numerical integration, the phase volume of 
the beam is strictly conserved. 
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