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Abstract 
Conversion of transverse energy associated with the 

coherent motion of displaced beams into thermal energy, 
and thus emittance growth, has been predicted theoreti- 
cally by a number of authors. Here, we show, using 2-D 
particle-in-cell simulations, that emittance growth is inhib- 
ited for tune depressed beams, if the energy spread of the 
beam is not too large. Further, using a uniform density 
model to calculate the space charge field of the beam, we 
numerically determine the criteria for emittance growth as 
a function of tune depression, energy spread, and beam dis- 
placement over a wide range of parameters. A theoretical 
interpretation of our results is presented. 

I. INTRODUCTION 

In an inertial fusion energy reactor, driven by a heavy 
ion accelerator, the ion beam must be focused down to a 
small (2-3 mm) spot at the target. The normalized emit- 
tance, (which is a measure of the transverse phase area oc- 
cupied by the beam) must be sufficiently small in order to 
meet the spot size requirement. An understanding of emit- 
tance growth is thus of paramount importance to ensure 
optimum performance of a driver. One source of emittance 
growth is the conversion of the energy associated with co- 
herent oscillation of the beam centroid into thermal energy 
of the beam. These oscillations may arise from initially 
non-aligned beams or accumulated from small misalign- 
ments in the focusing quadrupoles, for the case of a linear 
accelerator. In addition, centroid oscillations may arise 
from errors in the field strength in bending magnets, or 
voltage errors in the acceleration modules in accelerators 
in which bends are present. 

It is well known: that a beam with a KV distribution 
in the transverse direction [l] and monoenergetic in the 
longitudinal direction, and subject to strictly linear focus- 
ing forces will undergo no emittance growth, even if the 
beam is initially displaced. It is also well known that. for 
eitiitt.ancc, dominated beams (in which space charge is nrg- 
ligible), a small spread in the longitudinal velocity gives 
rise to a spread in the bet,atron frequency of individual 
particles, and this spread mixes the phase of the oscillating 
particles, removing the coherent oscillation of the centroid 
as a whole and increasing the effective transverse area of 
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phase space occupied by the beam. For emittance dom- 
inated beams, the smaller the energy spread, the smaller 
the rate at which the emittance grows to its final phase- 
mixed value. However, the asymptotic value of the emit- 
tance is nearly independent of energy spread, and can be 
estimated by using the conservation of transverse energy. 

In this paper, we examine the effect of energy spread 
on beams with finite space-charge-depressions in linear fo- 
cusing channels and find behavior which is qualitatively 
different from the emittance dominated case. In partic- 
ular, we find that for large initial centroid displacements 
there exists a threshold in energy spread, below which, no 
significant emittance growth occurs, and above which, the 
beam approaches the asymptotic phase mixed state. For 
small beam displacements, the transition is not sharp but 
the same general trend occurs. 

II. 2-D PARTICLE-IN-CELL RESULTS 

The effect was first observed numerically, using the 2- 
D slice code SHIFTXY [2]. H ere 2 and y are the transverse 
coordinates, and prime indicates derivative with repect to 
z the longitudinal coordinate. The beam is assumed to 
be displaced 2, = (z) in the 2 direction only, where ( ) 
indicates average over particles in a slice. The beam widths 
in both z and y directions were matched for the emittance 
and current of the beam. 
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Fig. 1. x-x’ phase space plots for two beams as indicated. 

Fig. 1 illustrate the effects. In fig. la, the z - 2’ 
phase space is shown for an undepressed beam (a/a0 = l), 

initially at .z = 0 and in fig. lb, eight bet,atron periods 
later (z =I20 m). Here ~0 and c are the undepressed 
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and depressed phase advances, respectively. The beam had 
fractional momentum spread of halfwidth A = 0.01, and 
the initial centroid displacement x,0 = 2a, where a is the 
initial beam radius in x. The beam fills a ring in x - 
x’ space of nearly uniform density, as different particles 
with different betatron frequencies, phase mix, damping 
the coherent centroid oscillation. In figure lc and Id, the 
initial and final phase spaces are shown for u/u0 = l/3.1 
with the same momentumspread. Note the transverse area 
is nearly unchanged from the initial area. This reduction in 
emittance growth (in this case by two orders of magnitude) 
is an unexpected benefit of space-charge dominated beams. 

III. MODEL RESULTS 

In order to obtain an understanding of this behavior 
we may adopt model equations of motion which simplify 
the physics of the space-charge force. We assume that the 
equations of motion of for each ion are given by, 

xi’ = (-kgox; + k&(x; - q))/( 1-t &)2. (1) 

Y:' = (-k&l/i + k,2,(yi -Yc))/(l +&)2. (2) 

Here, subscript i indicates the coordinates of the ith par- 
ticle in a particular slice in z, which is traveling in the +z 
direction; k,, E ao/(2L) represents magnetic FODO fo- 
cusing in the smooth approximation, and L is the lattice 
half-period; & = 6pi/p is the fractional difference between 
the momentum of the ith particle and the average mo- 
mentum; K E 2qI/(,f33AIo) is the perveance, where q is 
the charge state of the ions, A is the atomic mass of the 
ions! ,B is the average longitudinal ion velocity in units of 
c, I,, z mpc3/e is the proton Alfven current (Z31 MA). 
Also, 

kTZ E K/[2(Az2 + (A~AY~)‘/~)], 

k2 E K/[2(Ay2 + (A~‘AY~)I/~)]. 

Here Ax’ =‘ix2j - (x)“, 
(3) 

and Ay2 = (y2) - (y)‘. Eqs. 
(1) and (2) 1 re >resent in an approximate way, the effects of 
magnetic focusing and space charge, and the (1 +bi)-2 fac- 
tor indicates the velocity dependence of these forces when z 
is the independent variable. The physicai approximations 
that have been made include the following: (1) Focusing is 
smoot,h and not a function of z (I;@,, is constant). (2) In eqs. 
(1) and (2) terms through first order in the small quantities 
kpo~‘i, kpoyL have been kept. Non-linearities arise through 
the dependence of k,, and k,, on Ax2 and Ay2 and phase 
mixing can occur because of the (1 + Ei)-2 factors. (3) 
Space charge forces depend only on lowest order moments. 
(We have used t,he electrostatic potential of a uniform den- 
sity elliptical beam, allowing variation with z of the cen- 
troitl position and semi-major axes.) (4) The beam is not 
undergoing acceleration: (p, ,B, and &pi are constants). (5) 
The beam is non-relativistic: (p << 1). 

It has been shown [3,4], that when the factor (1+6i)-2 
is set to unity in equations (1) and (2), a transverse energy 
1-I may br defined which is constant in t: 

2 H = kg0 ( Ax2 + Ay2) + Ax’2 + Ay12 
-Ii ln((Ax2)‘/2 + (Ay2)‘j2) 

+kj& + k&y,2 + XL2 + yr2 (4) 
When the factor (1 + Si)- 2 is included, H is no longer pre- 
cisely constant, but the fluctuations in H are small when 
A is small. 

Phase mixing can lead to a final state in which the 
beam centroid has decayed to zero, at the expense of a 
larger phase space area. Two final states of the beam are 
of interest. When the x and y equations of motion are 
sufficiently uncoupled (as for example when d g ao) the 
beam width and displacement in the y direction are un- 
affected by the initial displacement in x. The final state 
of the beam evolves to xcf = gcf = xLr = yi, = 0 and 
Ay; = Ayi, where subscripts 0 and f stand for initial and 
final, respectively. Conservation of the transverse energy, 
yields: 

2Ho = kjjo(Az; + Ay;) + k;,,Ax; + k&,Ay; 
-Ii’ ln[(Ax;)‘i2 + (Ayi)““] (5) 

Here 2Ho = 2(kio + k~,,)Ax~ - K ln[2(Axi)‘/“] + 
kz,&. Equation (5) may be solved (numerically) for Ax;. 
The root mean square width in xt is given by Ax? = 
kf,,Azj and similarly the width in yt is given by Ayy = 
k:yrAy; (ref. 4). The final x emittance is given by czf = 

4(Ax;Ax;2)“’ and similarly in y, cYf = 4(Ay!Ay>2)‘/2. 
The second final state of interest is the case where the 

x and y equations of motion are sufficiently coupled so that 
the final state of the beam is the same in both x and y. In 
that case, Ax; = Ayj and 

2Ho = 2(k;, + k&,)Ax; - IL ln[2(Ax7)‘/2] (6) 
Again, eq. (6) may be solved numerically for Ax;, 

and then Ax)‘, Ad,“, frf, and cYj may be calculated as in 
the first case above. 

We have integrated the model eqs. (1) and (2), over 
a distance of 33 betatron periods for an ensemble of parti- 
cles, for a variety of ratios of beam radius n = ~(Ax;)‘/~ 
to initial beam displacements x,, space charge depressions 
g/ug, and halfwidth A of distribution in 5. The differ- 
ence between final and initial x-emittance is shown in fig- 
ures 2 and 3 for a/x, = 1. Note the sharp threshold for 
emittance growth. The threshold may be heuristically de- 
rived by a consideration of equation (1). In the case of 
no energy spread the centroid oscillates sinusoidally, x, = 
z,ocos kp,r, and the beam widths are constant Ax2 = 
Ay2 = Ax:. If we integrate eq. 1, assuming these val- 
ues for xc, Ax2 and Ay2 respectively, we find the solution 
to eq. (1): 

Xi = (Xi0 - k~ “:e”;r,) cos kz t dcG;“k2 + k:“~;o~;:““z (7) 
00 

Here k2 = (kg0 - kz,)/( 1 + 6z)2 ? (a/2L)2/( 1-t 6i)2. Also, 
kt6 E kf,/(l+&)“. Note that because of the energy spread, 
the assumption that Ax2 is constant breaks down. A nec- 
essary condition for eq. (7) to be nearly self-consistent is 
that the difference between the assumed x, and a particle 
position z at the edge of the distribution in & be much 
less than some fraction f of a beam radius. This condition 
leads to the equation: 
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(A - l)%o i fa *cl 
Eq. 8 defines a critical c$ below which ( i.e. for large 

negative values) the equations of motion become very non- 
linear, but above which the linear solution (eq. 7) remains 
approximately valid. When we substitute the half-width 
A of a uniform distribution in 6i for -6i into equation (8) 
that threshold may be written 

A-l-( ‘+‘;;~y,“l”c) l/2, (9) 
This threshold closely matches the threshold found 

in the numerical integration of eqs. 1 and 2 for emit- 
tance growth, when the value of f = 0.6 + O.~(U/Z,~). 
This formula for f was found by fitting to the numeri- 
cal plots. When the threshold is exceeded the emittance 
growth is given closely by that calculated from eq. (5) 
(see fig. 4). This th reshold is sharp when a/z,0 < 1, but 
the simulations show that the threshold is much broader 
when u/E,~ >> 1. In that case, the asymptotic emittance 
is close to the initial matched emittance, and the transi- 
tion from zero emittance growth to asymptotic emittance 
growth is gradual, so that the precise value off is not well 
defined. 

emitxf-emitx0 a/xc=l. 

Figure 2. Model equation results of czf - t,o for a/z,0 = 
1.0. 

emitxf-emitx0 a/xc=1 

Figure 3. Contour plot of figure 2, (c,f - ~~0 for u/2,0 = 
1.0). Dotted line is the threshold, (eq. 9). 

IV. DISCUSSION AND CONCLUSION 
Although, use of eqs. 1 and 2 simplify the actual 

forces cxpcrienced by the particles, threshold predicted by 

eq, 9 is qualitatively obtained in the particle-in-cell (PIG) 
results, and the final emittance predicted by eq. 5 is also 
approximately obtained in the PIC results, although 

a/xcO=l. Delta = 0.1 

O/O0 

Figure 4. Model equation results oft-,, - c,o vs. g/a0 
for A = 0.10. Dashed line is asymptotic emittance found 
using eq. 5. Short dashed line is found using eq. 6. 

additional phase mixing to the final state predicted by eq. 
6 is seen for smaller a/co. The result that space-charge 
depression reduces chromatic aberration in an alternating 
gradient lattice was observed by Lee [5] and is physically re- 
lated to the reduction of phase mixing for displaced beams. 
The coherence of centroid oscillations of highly depressed 
beams over many betatron periods was unexpected and 
was not predicted in previous studies of emittance growth 
from displaced beams [3,6]. Also, as indicated above, suf- 
ficiently large longitudinal velocity spreads will give rise 
to non-linearities which may become fully phase mixed. 
These results will have applications in determining error 
tolerances in possible drivers for heavy-ion inertial fusion. 
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