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Abstract 

Proton-proton scattering contributes to the emittance 
growth of the SSC. A formulation is given and used to esti- 
mate the mean scattering angle, which is used to determine 
the contribution to SSC emittance growth resulting from 
elastic pp scattering. The method is based upon Lorentz 
invariants, and it permits the determination of the cross- 
section for scattering in the center of mass (c.m.) system, 
as well as scattering from a fixed target (f.t.). Also an ex- 
ample is given for the case of electromagnetic pp scattering, 
which results from single virtual photon exchange. 

I. INTRODUCTION 

The contribution from pp elastic scattering to transverse 
emittance growth is determined for the SSC. Elastically 
scattered protons with a small scattering angle will remain 
within the Collider proton beam. These scattered par- 
ticles contribute to the growth of the beam’s transverse 
emittance. Numerical results for emittance growth result- 
ing from pp scattering and other sources are given in [l]. 
In this paper, a summary is given of the analytical meth- 
ods that are used to determine the mean scattering angle 
resulting from pp elastic scattering. Lorentz invariants and 
cross-sections are defined in Appendix A. 

II. PROTON-PROTON ELASTIC 
SCATTERING 

The contribution to transverse emittance growth, for one 
degree of freedom, resulting from pp elastic scattering is 
given by 

de, 
( > dt = (PLh + PLG2) (Tel < 6: > /(MNB), (2.1) 

where p,’ and & are, respectively, the beta function and 
the luminosity at the ith interaction point. In this expres- 
sion i\iB is the number of protons per bunch, M is the num- 
ber of bunches, c’el is the pp elastic scattering cross-section, 
and dz is the rms value of the pp elastic scattering 
angle in the center of mass system, which is projected onto 
the transverse x-direction. A similar expression occurs for 
the transverse y-direction. The mean scattering angle can 

In the above, the value of the total pp scattering cross- 
section is determined from 
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be estimated from the differential elastic scattering cross- 
section 

(%)c,*, = g ($$>,,,? (2.2) 

where S and T are Lorentz invariants. These invariants, 
defined in (Al), are S R 2E,.,., and T x -Ssin2(8/2) M 
-S(O; + 0;)/4. Th e invariant differential cross-section for 
pp elastic scattering is [2] 

duei “b(1 + p2)ebT, 
dT = 16n (2.3) 

where UT is the total pp cross-section, b is the slope param- 
eter, and p M 0 is the ratio of the real part to the imaginary 
part of the scattering amplitude. Assuming that the slope 
parameter is a constant, one can integrate the differential 
cross-section to obtain b R as/l67ra,r. With the approxi- 
mation u,~ M (1/4)u~, one finds b M q/4x. 

Using the approximations above, the differential cross- 
section in the cm. system becomes 

su$ &+& 
MFGe 8= 8= 1 (2.4) 

where 
ue, = dz= (bS/2)-l”. (2.5) 

This is the expression to be substituted into (2.1) to find 
dc,/dt. For colliding proton beams with fi = 40 TeV and 
UT M 130 mb, one finds b z 26.6 GeV2 and 

ug, = dm = 6.9 p rad. GW 

Js 
UT = 38.5 + 1.331n2im), (2.7) 

which is obtained from cosmic ray data [3]. Theoretical 
models giving values for the total and elastic pp cross- 
sections can be found in [4]. 

Using the above techniques, one can estimate the rms 
scattering angle dT < B > for the scattering of a proton in 
a 20 TeV beam from a fixed proton. The scattering angle 
in the c.m. system for high energy pp scattering is found 
from 

cos(8) E $+ 1. (2.8) 
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The scattering angle for a proton of energy w = S’/2m from multiplied by two. The invariant differential cross-section 
a proton at rest is found from for this case is now found to be 

$$(ab ---f cd) = 64S(;;; _ 1) MS> T> u> + A(% u, T) cos@) x 1 - 
2 sin2(0/2) 

(S/m2) - (S,& (2.9) 

Using cosJ M 1 - (l/2) sin2 g, the fixed target scattering 
angle is related to the c.m. scattering angle B through 

6% &/(*2@p) .l). (2.10) 

For the scattering of a 20 TeV proton from a proton 
at rest, the rms scattering angle in the c.m. system is 
found from (2.5),with a= 193 GeV, UT = 50.2 mb and 
b M 10.3GeV2, to be ds M 3.2 mrad. The corre- 
sponding angle in the fixed target system is found to be 

dz= 47prad. 

III. PROTON-PROTON 
ELECTROMAGNETIC SCATTERING 

In this example, pp scattering is treated as an electrp 
magnetic event, and the scattering of two fermions of initial 
four-momenta a and b to a final state of four-momenta c 
and d results from the exchange of a single virtual photon. 
The system of units h. = c = m = 1 is used. Since both 
the initial and final states involve identical particles, these 
states must be antisymmetrical. The initial state 11) and 
the final state IF) are represented as 

,I) = lab) - Pa) 
a 

,F) = I4 - PC) 
4 (3.1) 

The matrix element for this process is 

(F,M,I) = [(cd/ii/flab) - (cd(Mlba)+ 

(dclM[ba) - (dcjIMlab)]/2 

= e2[Jp(d, b)D,,(a - c)J”(c, u) - (d t-f c)], (3.2) 

where the fermion current is J”(c, u) = i&y!-‘u,. The pho- 
ton propagator is D,,(u - c) = 4Tgpv/((u - c)~ + if). We 
use the fermion density matrix p;j(u) = uaiiioj, which has 
the property Trp(a) = 2. 

The invariant differential cross-section for this process is 

duel 1 
-_. 
dT 1677f(S, a, b) M(S, T), 

where M(S,T) = I(FIM11)12. For the scattering of un- 
polarized fermions when the polarization of the final state 
fermions is not observed, the initial state spin density ma- 
t,rices for n and b are of the form pc(u) = (a + 1)/2. For 
the final states Ic) and Id), which include a summation over 
the final spin states, the corresponding density matrices are 

-B(S, T, U) - B(S, u, T)]. 
The invariant functions are 

A(S, T, U) = $Tpv(d, b)T&c, u) 

(3.4) 

(3.5) 

B(S,T, U) = &T”‘;v(b , c, a, 4, (3.6) 

where 
T“‘(c, a> = WCC + lW’(P + lh”l, (3.7) 

Tp”Xo(b,c,O) = T~[7~(6+I)y~(~+l)y~(B +l)r”(#+l)]. 
(3.3) 

Upon evaluation of the traces, the invariant functions be: 
come 

A(S, T, V) = $$S2 + U2 + 8T - 81 (3.9) 

B(S, T, U) = -&[S2 - 8s + la)]. (3.10) 

In the high energy limit when S becomes large, one finds 

$$(ab --+ cd) x $$. (3.11) 

The rms value of the c.m. scattering angle associated 
with (3.11) can be found using (2.8) in the form 

< case >z l- < .92 > /2 = 2 < T/S > +l, (3.12) 

where 

I 

T 

< T >= ma= T(da,/dT)dT/u,, (3.13) 
T nl,n 

and (T, = J(du,/dT)dT. The rms value of the scattering 
angle is written in terms of the projection on the transverse 
direction as J<e2T = Jm. The integration limits 
are found from T x 02/4, where em,,= and Bmin are found 
from the uncertainty principal, ArAQ M fi/p, and r,,, 
and r,in are found from the beam size and proton radius, 
respectively. One finds for u,r < Q2 >, which appears in 
(2.1), 1.6 x 1O-4o m2 from (2.3) and 1.8 x 10e4’ m2 from 
(3.11), which is smaller. 

APPENDIX A: Kinematics and Cross-Sections 

In this appendix, the kinematical variables and cross- 
sections used in the analysis are given. Particles char- 
acterized by four-momenta u and b interact elastically to 
yield particles characterized by four-momentum c and d. 
For this process, energy-momentum conservation is repre- 
sented as a+ b = c+d, where a typical four-vector is repre- 
sented as (1 = (a’, a), such that a2 = (u”)2-a.a = mz. The 
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interaction channels are defined according to the Lorentz 
invariants 

S = (u + b)2, T = (u - c)~, U = (u - d)2, (Al) 

which satisfy (S + T + U) = u2 + b2 + c2 + d2. 

In the c.m. system, one finds the invariant expressions 
for energy, momentum, and scattering angle 

&a = E(S, a, b) = (S + u2 - b”)/4(S/4)1/2, (AZ) 

‘?b = f(s, b, a), & = E(S, c, d),& = g(S, d, c), 

and 

with 

cos e,, = (T - u2 - c2 + 2&a&b)/21alICl, (A41 

f(S, a, b) = [S - (7% + m.b)2][s - (7% - mb)‘]. C-45) 

In the fixed target. system, the corresponding relations 
are 

w, = w(S.u, b) = (S - u2 - b2)/2mb, 

wb=mb,w,= -w(U, c, b),wd = -w(T, d, b), (A61 

la/ = fli2(S, a, b)/2mb, Ibl = 0, 

/cl = fl”(U, c, b)/2 mb, IdI = fl"(T, b, d)/2mb, (A7) 

and 
cos &, = [2b2(T - u2 - c2) 

-(S - a2 - b2)(U - b2 - c2)]/[f(S, a, b)f(U, c, b)]““. (A8) 

The differential cross-sections are found from the defini- 
tion of the invariant total cross-section for the interaction 
of two particles initially in the states 1~1 >, and lb > and the 
subsequent prc’duction of an n-particle final state, where 
each particle is characterized by a momentum state Ipi >. 

This cross-section is defined as 

1 
dS! T, = 2f’,2(S, u, b)(2T)3n-4 ’ 

J 
dp1dp2-‘dfbi 

fi s($ - mf>Q(pi) x S(U + b - f&)M(S, T, u), (A9) 
i=l i=l 

with B(p) = [(pa/w) + 1]/2,w = (lpi2 + m2)li2, and 

M(S,T,U) = I < flMb,b > 12, 

where< flMlu, b > is the transition amplitude from the 
initial to the final state. In (A9), one uses an invariant 
definition of the flux, which is represented as the magnitude 
of the relat.ive velocity Iv, - vbl in t.he c.m. system. The 
flux becomes F = f1i2(s, a, b)/‘LZ,Ea. 

Particular differential cross-sections may now be ob- 
tained from (AS). Of special interest is the differential 
cross-section defined formally as 

$ = u(S, T)S[T - (u - c)“]. (Al01 

For scattering into the solid angle da,, , one finds for elastic 
scattering in the cm. system 

da 
-= 
d%m. 

&f”‘(S, a, b)f112(S, c, d)$+. (All) 

The corresponding differential cross-section in the f.t. sys- 
tem may be found from (A8) and (AlO) to be 

- = 2f1’2(S, (I, b)f3’2(U, c, 6) da da 

dfij.t w(S, T, 1, m, 1, m) dT’ w4 

For the elastic scattering of a particle of unit mass with a 
particle of mass m, one finds the expression 

g(S,t, 1, m, 1, m) = 128m2[(S/4)2+ST/16-(S/4)(m2+1)/2 

-(T/4)(m2 - 1)/4 + (m2 - 1)2/16]. (A13) 
The integration indicated in (A9) and (AlO), when there 
is a two-particle final state characterized by four-momenta 
c and d, is performed in the c.m. system using the 
momentum-space measure 

dcdd = ,c,2d,c,dR,$d&$ 

to find (3.3). 

(Al4) 

PI 

PI 

PI 
PI 
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