Proton-Proton Scattering Contribution to Emittance Growth

T. Garavaglia
Superconducting Super Collider Laboratory* 2550 Beckleymeade Ave., Dallas, TX 75237 USA

Abstract

Proton-proton scattering contributes to the emittance growth of the SSC. A formulation is given and used to estimate the mean scattering angle, which is used to determine the contribution to SSC emittance growth resulting from elastic $p p$ scattering. The method is based upon Lorentz invariants, and it permits the determination of the crosssection for scattering in the center of mass (c.m.) system, as well as scattering from a fixed target (f.t.). Also an example is given for the case of electromagnetic $p p$ scattering, which results from single virtual photon exchange.

I. INTRODUCTION

The contribution from $p p$ elastic scattering to transverse emittance growth is determined for the SSC. Elastically scattered protons with a small scattering angle will remain within the Collider proton beam. These scattered particles contribute to the growth of the beam's transverse emittance. Numerical results for emittance growth resulting from $p p$ scattering and other sources are given in [1]. In this paper, a summary is given of the analytical methods that are used to determine the mean scattering angle resulting from $p p$ elastic scattering. Lorentz invariants and cross-sections are defined in Appendix A.

II. PROTON-PROTON ELASTIC SCATTERING

The contribution to transverse emittance growth, for one degree of freedom, resulting from $p p$ elastic scattering is given by

$$
\begin{equation*}
\left(\frac{d \epsilon_{x}}{d t}\right)=\left(\beta_{1 x}^{*} \mathcal{L}_{1}+\beta_{2 x}^{*} \mathcal{L}_{2}\right) \sigma_{e l}<\theta_{x}^{2}>/\left(M N_{B}\right) \tag{2.1}
\end{equation*}
$$

where β_{i}^{*} and \mathcal{C}_{i} are, respectively, the beta function and the luminosity at the $i^{t h}$ interaction point. In this expression N_{B} is the number of protons per bunch, M is the number of bunches, $\sigma_{\varepsilon l}$ is the $p p$ elastic scattering cross-section, and $\sqrt{\left\langle\theta_{x}^{2}\right\rangle}$ is the rms value of the $p p$ elastic scattering angle in the center of mass system, which is projected onto the transverse x-direction. A similar expression occurs for the transverse y-direction. The mean scattering angle can

[^0]be estimated from the differential elastic scattering crosssection
\[

$$
\begin{equation*}
\left(\frac{d \sigma_{e l}}{d \Omega}\right)_{c, m}=\frac{S}{4 \pi}\left(\frac{d \sigma_{e l}}{d T}\right)_{c m} \tag{2.2}
\end{equation*}
$$

\]

where S and T are Lorentz invariants. These invariants, defincd in (A1), arc $S \approx 2 E_{c . m .}$, and $T \approx-S \sin ^{2}(\theta / 2) \approx$ $-S\left(\theta_{x}^{2}+\theta_{y}^{2}\right) / 4$. The invariant differential cross-section for $p p$ elastic scattering is [2]

$$
\begin{equation*}
\frac{d \sigma_{e l}}{d T} \approx \frac{\sigma_{T}^{2}}{16 \pi}\left(1+\rho^{2}\right) e^{b T} \tag{2.3}
\end{equation*}
$$

where σ_{T} is the total $p p$ cross-section, b is the slope parameter, and $\rho \approx 0$ is the ratio of the real part to the imaginary part of the scattering amplitude. Assuming that the slope parameter is a constant, one can integrate the differential cross-section to obtain $b \approx \sigma_{T}^{2} / 16 \pi \sigma_{e l}$. With the approximation $\sigma_{e l} \approx(1 / 4) \sigma_{T}$, one finds $b \approx \sigma_{T} / 4 \pi$.

Using the approximations above, the differential crosssection in the $c . m$. system becomes

$$
\begin{equation*}
\left(\frac{d \sigma_{e l}}{d \Omega}\right)_{c . m .} \approx \frac{S \sigma_{T}^{2}}{64 \pi^{2}} e^{\left(\frac{\theta_{x}^{2}}{2 \sigma_{\theta_{x}}^{2}}+\frac{\theta_{y}^{2}}{2 \sigma_{\theta_{x}}^{2}}\right)} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{\theta_{x}}=\sqrt{<\theta_{x}^{2}>}=(b S / 2)^{-1 / 2} \tag{2.5}
\end{equation*}
$$

This is the expression to be substituted into (2.1) to find $d \epsilon_{x} / d t$. For colliding proton beams with $\sqrt{S}=40 \mathrm{TeV}$ and $\sigma_{T} \approx 130 \mathrm{mb}$, one finds $b \approx 26.6 \mathrm{GeV}^{-2}$ and

$$
\begin{equation*}
\sigma_{\theta_{x}}=\sqrt{\left.<\theta_{x}^{2}\right\rangle}=6.9 \mu \mathrm{rad} . \tag{2.6}
\end{equation*}
$$

In the above, the value of the total $p p$ scattering crosssection is determined from

$$
\begin{equation*}
\sigma_{T}=38.5+1.33 \ln ^{2}\left(\frac{\sqrt{S}}{10 \mathrm{GeV}}\right) \tag{2.7}
\end{equation*}
$$

which is obtained from cosmic ray data [3]. Theoretical models giving values for the total and elastic $p p$ crosssections can be found in [4].

Using the above techniques, one can estimate the rms scattering angle $\sqrt{<\tilde{\theta}^{2}>}$ for the scattering of a proton in a 20 TeV beam from a fixed proton. The scattering angle in the c.m. system for high energy $p p$ scattering is found from

$$
\begin{equation*}
\cos (\theta) \approx \frac{2 T}{S}+1 \tag{2.8}
\end{equation*}
$$

The scattering angle for a proton of energy $\omega=S / 2 m$ from a proton at rest is found from

$$
\begin{equation*}
\cos (\tilde{\theta}) \approx 1-\frac{2 \sin ^{2}(\theta / 2)}{\left(S / m^{2}\right)}-\frac{4}{\left(S / m^{2}\right)^{2}} \tag{2.9}
\end{equation*}
$$

Using $\cos \tilde{\theta} \approx 1-(1 / 2) \sin ^{2} \tilde{\theta}$, the fixed target scattering angle is related to the c.m. scattering angle θ through

$$
\begin{equation*}
\tilde{\theta} \approx \frac{\sqrt{2}}{(\omega / m)} \sqrt{\left(\frac{\theta^{2}(\omega / m)}{4}+1\right)} \tag{2.10}
\end{equation*}
$$

For the scattering of a 20 TeV proton from a proton at rest, the rms scattering angle in the c.m. system is found from (2.5), with $\sqrt{S}=193 \mathrm{GeV}, \sigma_{T}=50.2 \mathrm{mb}$ and $b \approx 10.3 \mathrm{GeV}^{-2}$, to be $\sqrt{<\theta^{2}>} \approx 3.2 \mathrm{mrad}$. The corresponding angle in the fixed target system is found to be $\sqrt{<\tilde{\theta}_{x}^{2}>} \approx 47 \mu \mathrm{rad}$.

III. PROTON-PROTON ELECTROMAGNETIC SCATTERING

In this example, $p p$ scattering is treated as an electromagnetic event, and the scattering of two fermions of initial four-momenta a and b to a final state of four-momenta c and d results from the exchange of a single virtual photon. The system of units $\hbar=c=m=1$ is used. Since both the initial and final states involve identical particles, these states must be antisymmetrical. The initial state $\mid I)$ and the final state $\mid F$) are represented as

$$
\begin{equation*}
\mid I)=\frac{(a b)-(b a)}{\sqrt{2}}(F)=\frac{(c d)-(d c)}{\sqrt{2}} . \tag{3.1}
\end{equation*}
$$

The matrix element for this process is

$$
\begin{gather*}
(F|M| I)=[(c d|M| a b)-(c d|M| b a)+ \\
(d c|M| b a)-(d c|M| a b)] / 2 \\
=e^{2}\left[J^{\mu}(d, b) D_{\mu \nu}(a-c) J^{\nu}(c, a)-(d \leftrightarrow c)\right] \tag{3.2}
\end{gather*}
$$

where the fermion current is $J^{\mu}(c, a)=\bar{u}_{c} \gamma^{\mu} u_{a}$. The photon propagator is $D_{\mu \nu}(a-c)=4 \pi g_{\mu \nu} /\left((a-c)^{2}+i \epsilon\right)$. We use the fermion density matrix $\rho_{i j}(a)=u_{a i} \bar{u}_{a j}$, which has the property $\operatorname{Tr} \rho(a)=2$.

The invariant differential cross-section for this process is

$$
\begin{equation*}
\frac{d \sigma_{e l}}{d T}=\frac{1}{16 \pi f(S, a, b)} \mathcal{M}(S, T) \tag{3.3}
\end{equation*}
$$

where $\mathcal{M}(S, T)=|(F|M| I)|^{2}$. For the scattering of unpolarized fermions when the polarization of the final state fermions is not observed, the initial state spin density matrices for a and b are of the form $\rho_{0}(a)=(d+1) / 2$. For the final states $\mid c$) and $\mid d)$, which include a summation over the final spin states, the corresponding density matrices are
multiplied by two. The invariant differential cross-section for this case is now found to be

$$
\begin{align*}
\frac{d \sigma_{e l}}{d T}(a b \rightarrow c d) & =\frac{\pi e^{4}}{64 S(S / 4-1)}[A(S, T, U)+A(S, U, T) \\
& -B(S, T, U)-B(S, U, T)] \tag{3.4}
\end{align*}
$$

The invariant functions are

$$
\begin{align*}
& A(S, T, U)=\frac{4}{T^{2}} T^{\mu \nu}(d, b) T_{\mu \nu}(c, a) \tag{3.5}\\
& B(S, T, U)=\frac{4}{T U} T_{\mu \nu}^{\mu \nu}(b, c, a, d) \tag{3.6}
\end{align*}
$$

where

$$
\begin{equation*}
T^{\mu \nu}(c, a)=\operatorname{Tr}\left[(\phi+1) \gamma^{\mu}(\nless+1) \gamma^{\nu}\right] \tag{3.7}
\end{equation*}
$$

$T^{\mu \nu \lambda \sigma}(b, c, a, d)=\operatorname{Tr}\left[\gamma^{\mu}(\phi+1) \gamma^{\nu}(\xi+1) \gamma^{\lambda}(\phi+1) \gamma^{\sigma}(d+1)\right]$.
Upon evaluation of the traces, the invariant functions become

$$
\begin{gather*}
A(S, T, U)=\frac{32}{T^{2}}\left[S^{2}+U^{2}+8 T-8\right] \tag{3.9}\\
\left.B(S, T, U)=-\frac{32}{T U}\left[S^{2}-8 S+12\right)\right] \tag{3.10}
\end{gather*}
$$

In the high energy limit when S becomes large, one finds

$$
\begin{equation*}
\frac{d \sigma_{e l}}{d T}(a b \rightarrow c d) \approx \frac{4 \pi e^{4}}{T^{2}} \tag{3.11}
\end{equation*}
$$

The rms value of the c.m. scattering angle associated with (3.11) can be found using (2.8) in the form

$$
\begin{equation*}
<\cos \theta>\approx 1-<\theta^{2}>/ 2=2<T / S>+1 \tag{3.12}
\end{equation*}
$$

where

$$
\begin{equation*}
<T>=\int_{T_{\min }}^{T_{\max }} T\left(d \sigma_{e} / d T\right) d T / \sigma_{e} \tag{3.13}
\end{equation*}
$$

and $\sigma_{e}=\int\left(d \sigma_{e} / d T\right) d T$. The rms value of the scattering angle is written in terms of the projection on the transverse direction as $\sqrt{\left\langle\theta^{2}\right\rangle}=\sqrt{2\left\langle\theta_{x}^{2}\right\rangle}$. The integration limits are found from $T \approx \theta^{2} / 4$, where $\theta_{\max }$ and $\theta_{\min }$ are found from the uncertainty principal, $\Delta r \Delta \theta \approx \hbar / p$, and $r_{\max }$ and $r_{\min }$ are found from the beam size and proton radius, respectively. One finds for $\sigma_{e l}<\theta^{2}>$, which appears in (2.1), $1.6 \times 10^{-40} \mathrm{~m}^{2}$ from (2.3) and $1.8 \times 10^{-42} \mathrm{~m}^{2}$ from (3.11), which is smaller.

APPENDIX A: Kinematics and Cross-Sections

In this appendix, the kinematical variables and crosssections used in the analysis are given. Particles characterized by four-momenta a and b interact elastically to yield particles characterized by four-momentum c and d. For this process, energy-momentum conservation is represented as $a+b=c+d$, where a typical four-vector is represented as $a=\left(a^{n}, \mathbf{a}\right)$, such that $a^{2}=\left(a^{0}\right)^{2}-\mathbf{a} \cdot \mathbf{a}=m_{a}^{2}$. The
interaction channels are defined according to the Lorentz invariants

$$
\begin{equation*}
S=(a+b)^{2}, T=(a-c)^{2}, U=(a-d)^{2}, \tag{A1}
\end{equation*}
$$

which satisfy $(S+T+U)=a^{2}+b^{2}+c^{2}+d^{2}$.
In the c.m. system, one finds the invariant expressions for energy, momentum, and scattering angle

$$
\begin{gather*}
\mathcal{E}_{a}=\mathcal{E}(S, a, b)=\left(S+a^{2}-b^{2}\right) / 4(S / 4)^{1 / 2}, \tag{A2}\\
\mathcal{E}_{b}=\mathcal{E}(S, b, a), \mathcal{E}_{c}=\mathcal{E}(S, c, d), \mathcal{E}_{d}=\mathcal{E}(S, d, c) \\
|\mathbf{a}|=|\mathbf{b}|=\left[\frac{f(S, a, b)}{4 S}\right]^{1 / 2},|\mathbf{c}|=|\mathbf{d}|=\left[\frac{f(S, c, d)}{4 S}\right]^{1 / 2}, \tag{A3}
\end{gather*}
$$

and

$$
\begin{equation*}
\cos \theta_{a c}=\left(T-a^{2}-c^{2}+2 \mathcal{E}_{a} \mathcal{E}_{b}\right) / 2|\mathbf{a}||\mathbf{c}| \tag{A4}
\end{equation*}
$$

with

$$
\begin{equation*}
f(S, a, b)=\left[S-\left(m_{a}+m_{b}\right)^{2}\right]\left[S-\left(m_{a}-m_{b}\right)^{2}\right] . \tag{A5}
\end{equation*}
$$

In the fixed target system, the corresponding relations are

$$
\begin{gather*}
\omega_{a}=\omega(S \cdot a, b)=\left(S-a^{2}-b^{2}\right) / 2 m_{b} \\
\omega_{b}=m_{b}, \omega_{c}=-\omega(U, c, b), \omega_{d}=-\omega(T, d, b) \tag{A6}\\
|\mathbf{a}|=f^{1 / 2}(S, a, b) / 2 m_{b},|\mathbf{b}|=0 \\
|\mathbf{c}|=f^{1 / 2}(U, c, b) / 2 m_{b},|\mathbf{d}|=f^{1 / 2}(T, b, d) / 2 m_{b} \tag{A7}
\end{gather*}
$$

and

$$
\begin{gather*}
\cos \tilde{\theta}_{a c}=\left[2 b^{2}\left(T-a^{2}-c^{2}\right)\right. \\
\left.-\left(S-a^{2}-b^{2}\right)\left(U-b^{2}-c^{2}\right)\right] /[f(S, a, b) f(U, c, b)]^{1 / 2} \tag{A8}
\end{gather*}
$$

The differential cross-sections are found from the definition of the invariant total cross-section for the interaction of two particles initially in the states $|a\rangle$, and $|b\rangle$ and the subsequent production of an n-particle final state, where each particle is characterized by a momentum state $\left|p_{i}\right\rangle$.

This cross-section is defined as

$$
\begin{align*}
& \sigma(S, T)=\frac{1}{2 f^{1 / 2}(S, a, b)(2 \pi)^{3 n-4}} \times \int d p_{1} d p_{2} \ldots d p_{n} \\
& \prod_{i=1}^{n} \delta\left(p_{i}^{2}-m_{i}^{2}\right) \theta\left(p_{i}\right) \times \delta\left(a+b-\sum_{i=1}^{n} p_{i}\right) \mathcal{M}(S, T, U), \tag{A9}
\end{align*}
$$

with $\theta(p)=\left[\left(p^{0} / \omega\right)+1\right] / 2, \omega=\left(|\mathbf{p}|^{2}+m^{2}\right)^{1 / 2}$, and

$$
\mathcal{M}(S, T, U)=\left.|<f| \mathcal{M}|a, b\rangle\right|^{2}
$$

where $<f|M| a, b>$ is the transition amplitude from the initial to the final state. In (A9), one uses an invariant definition of the flux, which is represented as the magnitude of the relative velocity $\left|\mathbf{v}_{a}-\mathbf{v}_{b}\right|$ in the c.m. system. The flux becomes $F=f^{1 / 2}(s, a, b) / 2 \mathcal{E}_{a} \mathcal{E}_{b}$.

Particular differential cross-sections may now be obtained from (A9). Of special interest is the differential cross-section defined formally as

$$
\begin{equation*}
\frac{d \sigma}{d T}=\sigma(S, T) \delta\left[T-(a-c)^{2}\right] \tag{A10}
\end{equation*}
$$

For scattering into the solid angle $d \Omega_{a c}$, one finds for elastic scattering in the c.m. system

$$
\begin{equation*}
\frac{d \sigma}{d \Omega_{c . m .}}=\frac{1}{4 \pi S} f^{1 / 2}(S, a, b) f^{1 / 2}(S, c, d) \frac{d \sigma}{d T} . \tag{A11}
\end{equation*}
$$

The corresponding differential cross-section in the f.t. system may be found from (A8) and (A10) to be

$$
\begin{equation*}
\frac{d \sigma}{d \Omega_{f, t}}=\frac{2 f^{1 / 2}(S, a, b) f^{3 / 2}(U, c, b)}{\pi g(S, T, 1, m, 1, m)} \frac{d \sigma}{d T} . \tag{A12}
\end{equation*}
$$

For the elastic scattering of a particle of unit mass with a particle of mass m, one finds the expression

$$
\begin{gather*}
g(S, t, 1, m, 1, m)=128 m^{2}\left[(S / 4)^{2}+S T / 16-(S / 4)\left(m^{2}+1\right) / 2\right. \\
\left.-(T / 4)\left(m^{2}-1\right) / 4+\left(m^{2}-1\right)^{2} / 16\right] . \tag{A13}
\end{gather*}
$$

The integration indicated in (A9) and (A10), when there is a two-particle final state characterized by four-momenta c and d, is performed in the c.m. system using the momentum-space measure

$$
\begin{equation*}
d c d d=|\mathrm{c}|^{2} d|\mathbf{c}| d \Omega_{c} \frac{d c^{2}}{\frac{2 c^{0}}{}} d \mathbf{d} \frac{d d^{2}}{2 d^{0}} \tag{A14}
\end{equation*}
$$

to find (3.3).

IV. REFERENCES

[1] W. Chou, S. Dutt, T. Garavaglia, and S. K. Kauffmann, these proceedings.
[2] K. Goulianos, "Diffractive and rising cross-sections, "Comments on Nucl. Part. Phys. 17, No. 4, pp. 177193 (1987).
[3] M. Honda et.al., Phys. Rev. Lett. 70, 525 (1993).
[4] P.V. Landshoff, "Soft hadron physics," Ioint International Lepton-Photon \& Europhysics Conference on High Energy Physics, Vol. 2, pp. 365-373 (World Scientific, 1991).

[^0]: *Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract No. DE-AC3589ER40486.

