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Ahslrncl 

Ripple in the power supplies for storage ring magnets can 
have attvers~ effects on t.hc circulating beams: orbit. distortion 
and omittance growt,h from dipole ripple, tune modulat,ion and 
dpnamic aperture rcduct,ion from quadrupole ripple, etc. In this 
paper, we study the cffccts of ripple in the horizontal bending 
field of the SS(‘: in the presence of nonlinearity, in part,icular. 
the growth in beam emittance. 

I. 1NTRODUC:TION 

For simplicity, WC will assume that dipole ripple is localized, 
i.0.. it affec.ts only one dipole magnet. An elernellt-by-elenient 

tracking simulation using the program ZTRACK’ with a lo- 
calizctl dipole ripple yields thp results shown in Figure, 1. In 
the simulation. 192 particles are tracked, the ripple has a fre- 
qucncy of i’43.2) Hz and an amplitude of 10 Gauss, thr nominal 
brnding field is G.684 x IO4 Gauss, and t,he horizontal betatron 
tune is 123.7821548. Note that the revolution frequency at the 
SI;(’ is 3441 Hz. We observe from Figure 1 that dipole rip- 
ple causes t,he beam emittance to oscillate between the initial 
value (3.0 x1O-‘o m) and a much larger value (x 2.5 x lOPi m), 
and that this oscillation is damped with emittance leveling off 
around an intermediate value (Z 1.0~10-~ m). The beam emit- 
tance here is defined as the emittance averaged over the whole 
beam. Thus it, appears that dipole ripple causes the beam to 
go from one equilibrium state to another where the beam has a 
larger emittance. In this simulat,ion, we have chosen the ripple 
frequency to be close to the betatron frequency of 748.62 Hz 
(Z 34.11 x ..?1785) and a large ripple amplitude so that, we can 
observe the final equilibrium state in a sltort time. 

One can easily imagine the physics possibly at work here: 
dipole rippI? causes the whole beam to wobble around the de- 
sign orbit. and nonlinrarity, which is built in the full latt,ice 
and results in betatron tune dependent, on betatron amplitude, 
then smears the whole beam over a larger phase space area. 
Our motivation for t,his work is to understand this quantita- 
tively. In particular, we want to explain the following regarding 
t,he beam emittance: the existence of an apparent equilibrium, 
the amplitude and period of initial oscillations, the final equi- 
librium value. and how much time it takes t.o reach the final 
equilibrium st,ate. To this end, we have constructed a tlteoret- 
ical model using a second-order perturbation theory and the 
method of averaging. Since the nonlinearity, which is present 
in the full lattice simulation above. was found to produce a 
quadratic dependence of betatron tune on betatron amplitude, 
we represent it in our model by a single sextupole. Our theo- 
rrtical calculations are in excellent agreement with results from 
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t.he simple tra.cking simulations using a linear lattice plus kicks 
from a single sextnpole and a localized dipole ripple. 
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Figure 1. Variation of beam emittancr in time from a full tatticr 
simulation. 

II. THEORETICAL MODELS 

The perturbed beam dynamics is described by the Hamilto- 
nian 

H(r,x’,s) = Ho(~,r’;s)+~Hl(x,s) (1) 

where Ilo = $(s’~+~<(s)L’). Here s is the pat.h length along the 
design orbit, .Z the horizont,al coordinate, s’ = dx/ds, Ii(s) t,he 
focusing or defocusing function, and c tlte smallness parameter 
of the perturbation. F 01 perturbation from a single sextupole 
and a localized dipole ripple, we have 

CHl(.r,S) = ;s(s)r3 - F(S)I (‘2) 

S(s) = s0l5& - s1) (:l) 

F(s) = A0 cos(w, r + 47 )6,(s - so) (4) 

where So is t,he sextupole strength, 51) is the periodic Dirac delta 
function, sl the position of the sextupole, A4o = (B,/Bo)&, 
B, the ripple amplitude, BO the nominal bending field, ffo the 
nominal bending angle, wr the angular ripple frequency, r the 
time, and SO the position of the localized dipole ripple. 

To explain initial periodic oscillations, we will consider only 
the dipole ripple perturbation. Using the independent variable 

t = J dS(z@(S)) -I and the dependent variable 11 = x/m 
where /3(s) is the betatron function, and Y the betatron tune, 
the equation of motion becomes 

2 + //‘I/ = z&Lo cos(Q,t + &)6p(t - to) (5) 

where Qr = +/do, wo is t,he revolution frequency, and PO the 
betatron function at t,he dipole ripple. Since the right-hand side 
of (5) can be expressed in the form 

2 (Ane’(“tQr)t + ~~,~--‘(“+8&), 

tl=--rX 
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we seek a particular solution of the same form. The particular 
solution we find can be written as 

VP = (&) go+ ilo 2 cos “:;MQy;,;2 + Q (6) 

7l=--nc 

With initial conditions q(O) = ~0 and t(O) = to. where < = 
tlr)/dt, the solution to (5) is then given by 

I) = (I)0 - I,J II)) cos r/t + ( EO -t,,(n)) sin ut + rj,(f). (7) 

The results on beam emittance calculatetl using (7) with B, = 
,322 Gauss and ids = (2~)(743.29) rad see-’ are shown in Fig- 
ure 2 by a solid curve, which agrees well with results from a fall 
lattice simulation indicated by circles. The crosses are results 
from a simple tracking simulation, to be described in Section III. 
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Figure 2. Variation of beam entittance in time. Curve: exact 
theory; circles: full lattice tracking: crosses: sitnple tracking. 

To explain the final equilibrium state, we will consider both 
dipole ripple and sextupole perturbations. We will carry auf. 
t,he second-order perl.urhation calculation in the action-angle 
representation. ‘Thtl action-angle variables J and q6 are defined 
t,hrouglt the following transformation 

cos $h, ( = -(3Jv)b sind. (8) 

The new Hamiltonian for the action-angle variables is given by 

‘H(J,b,f) = uJ+J/~(.s)HI 
( 
/T”(s) (~)Lsm..) (9) 

Here s is understood to be a function of t. From (9) one obtains 
the Hamiltonian rquat,ions of motion 

j = ff(J,b,t), s = v + cg( J, d, t). (10) 

To find approximate solutions of (10) with initial conditions 
J(0) = Jo and 4(O) = 40, we look for a special autonomous 
system given by 

i = s,(I) +2F2(1) (11) 

ri = Y + CC,(I) + 2Gz(l) (12) 

with initial conditions I(0) = .lo + fu(Jo,&), e(O) = 40 + 
tu( .Joo. do), and a near identity transformation 

j = I+FP~(I,8,t)+F2P2(I,6),t) (13) 

i = B+cQ~(I,8,t)+c2Q~(1.B,t) (14) 

s!tch that j and q! satis-fy (10) t,o O(c”) with initial conditions 
J(0) = .I0 +O(F’) and q(O) = 40 +O(f’). It. can be shown t,hat 
j(t) and i(l) approximate .I( t) and ~5( t) t,o an accuracy of O(t2) 
over a titne interval of 0 (t). Tl tns the t.ask of finding holntions 
to (10) is then reduced to that of finding F~. Pl, (it, (,‘z, PIT 
and Q,. (We don’t need to find Pl and Qs if WC are concerned 
with an O(2) accuracy.) Recanbe f and y are periodic in ci, and 
quasi-periodic in t, (two periods a.re involved: one is associated 
wit,h the beam revolution and t,he other associated with ripple) 
we require that PI, I’*, Q1 and Q 2 are also perioclic in 6, and 
quasi-periotlic in t. 

For dipole ripple and sext,upole pert,urbations, one can writ.e 
f = f”) + f(‘) at~cl g = y(‘) + y(“) where the superscripts (r) 
and (s) stand for contributions frotn dipole ripple and sextupole 
respectively. A lrngthy calculation involving expansion in c t.o 
the second order and averaging over 0 and t yields Ft = 0, 
G1 = 0, Fz = 0, G2 = Gb” = (g’,“P/” + gi”Q:‘)) where () 

denotes the average over 8 and t, the subscripts I and 6’ denote 
the derivatives with respect to I and 6, respectively, and Pi” and 

Qi” (i = r, s) satisfy t,he homological equations Pii’ + VP:;’ = 

f”’ and Q’,:’ + vQte - g (t) _ (t) respect,ively. We refer the readers 
to the paper by H. Dumas et. al.* for tnore information on our 
averagittg procedure. In summary, our approximate solutions 
j and 4 are given by 

i = 0, e = Y + c”G;“( I) (15) 

j = r+c(P,“‘(r,8,t)+f~~‘)(I,8,1)) (16) 

4 = e+~(Qj”(r,e,t)+Q(,~‘(I,B,t)) (17) 

with ,u(J,d) = -PI(J,(P,O). u(J,d) = -QI(J,~+O), and G$“‘, 
Pi”), Q(1’), Pi” and Q\” given by 

GL”(I) = -y+u ($(l +v) 

&( 1 + 3u) - $!( 1 - 3v) I 
--L:‘(l - V) + 

3 >> 
(18) 

Py’(r,e,t) = - (&)+ IQ,Qo (19) 

X 

{ 

cos (u([t:] - 7r) - 0) 

sitt( xv) 

+ cos (3V([t;] - x) - 30) 

sin( 3Tv) 
I 

t 
I 3 a” so (20) 

x 

i 

3sin (~([1:] - 7r) - II) + sin (3v([t:] - 7r) - 30) 

sin( TV) sin( 37ru) 
i 

Pp(I,o,t) = (f)’ (:,&to 

X 
cos ((u - Qr)([t;] - T) - (@ - Q,.t - Or)) 

sin T( v - Qr) 

+cos (b + Ql.)([G] - r) - (0 + Qrt + 0,)) 
sin T( v + Qr ) (21) 

2H.S. Dumas, J..4. Ellison and A.W. S&XL, Annals of Physics 
209,9: (1991). 
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Q;“([,Jf)= ($)+h&t, 

sin ((u - Qr)([t&] - r) - (0 - Qrl - ST)) 
x 

sin a(u - Qr) 

+ sin f(f) + Q, I([% - 7) - (6’ + Qrt + 61) 
sin 7r( v + Qr) 

1 

(;“) 

where t](s) G I“(.r)/T(r), 131 i\ the betatron function at, the 
sextupole. t; E t - lo, ti E t - t,, and [ ] denotes the modnlus 
betwern 0 and 2x. Our pertllrbation calculations indicate that, 
up to the second ortler. dipole ripple contributes only in the 
near-identity t,ransformations (16) and (17). The vector field, 
(15). is still given I)y sc,xtupole pert,urbation. 

Figure 3 shows the pt~ase hpacc distribution of a beam after 
,500OO turns catcntated nsing (15) (22). The beam consists of 
,500 partic-trs and is initially uniformly distributed iu the ranges 
of 0.1 < I < 0.3 mm and -2.4 < r’ < -2.0 /brad. In t,tiis catcu- 
lation the ripple has a frequency of 720 Hz and an amplitude 
of 0.322 (;auss. and the sextupole strengrh is So = -0.55580. 
which reproduces the relationship C\“’ = (1.0567 X lO”)I 01). 
tained from a fit t,o the drp~nd~nc~ of brt,at,ron tune on betatron 
altlplitude in the full latt.icr- mentioned in Section I. For an ini- 
tial beam whose distributions in .r and .c’ are Gaussian (and 
t,hus t,he distribution in t.hc angle variable is uniform in the lin- 
ear approximation), the averages of the second order terms over 
the angle variable a.re zero, and one has to go to a third-order 
pert.urbatiort calculation. However. a serious drawback of the 

action-angle approach is that, cl’i”/l is proportional to I-5, 
and the pert.urhation calculation breaks down for small 1. We 
are now working on a new set of variables which doesn’t have 
this problem. 
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Figure 3. Phase space distribution of a beam after 50000 turns 
from a perturbation calculation. 

III. TRACKING SIMULATIONS 

To check our theoretical models, we have tracked particles us- 
ing linear transfer matrices with kicks from a single sextupole 
and a localized dipole ripple. This simple tracking method has 
produced the results indicated by crosses in Figure 2, and repro- 
duced those shown in Figure 3. It also gives results very similar 
to those shown in Figure 1. The resn1t.s from a run following 
500 particles with B, = 1 Gauss. wr = 2x(720) rad set-‘, and 

v = 123.78677 is shown in Figure 4. Because t,he computing 
time with the simple tracking simulat.ion is greatly reduced, 
we can now more easily det,ermine the dependence of the final 
equilibrium emittance on a few relevant parameters, e.g., ripple 
amplitude. Figure 5 summarizes our st.ntly on the dependence 
of relative emittance growt.h on ripple amplitude and betatron 
tune. The ripple frequency is fixed at 720 Hz. 
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Figure 4. Variat,ion of beam c~n~ittanc~~ in time from a simple 
t.racking simulation. 
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Figure 5. Relative growth in beam emittance as a function 
of ripple amplitude. Circles: v = 123.77877; squares: v = 
123.78215; diamonds: v = 123.78677. 

IV. CONCLUSIONS 

Theoretical models have been developed to explain the fea- 
tures of emittance evolution observed from the full lattice simu- 
lation in the presence of dipole ripple. Our calculation with just 
dipole ripple is exact and explains the observed initial oscilla- 
tions of beam emittance. Our model for the apparent existence 
of final equilibrium state is based on a second-order perturba- 
tion calculation involving both dipole ripple and sextupole. Its 
predictions agree very well with resu1t.s from simple tracking 
simnlations using a linear lattice plus kicks from dipole ripple 
and sextupole. The simple tracking method that we have de- 
veloped is very fast and very suitable for exploring final equilib- 
rium states by changing relevant parameters over a wide range. 
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