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Abstract 
In order to employ Molecular Dynamics method, com- 

monly used in condensed matter physics, we have derived 
the equations of motion for a beam of charged particles 
in the rotating rest frame of the reference particle. We 
include in the formalism that the particles are confined 
by t,he guiding and focusing magnetic fields, and that they 
are confined in a conducting vacuum pipe while interacting 
with each other via a Coulomb force. Numerical simula- 
tions has been performed to obtain the equilibrium struc- 
ture. The effects of the shearing force, centrifugal force, 
and azimuthal variation of the focusing strength are inves- 
tigated. It, is found that a constant gradient storage ring 
can not give a crystalline beam, but that an alternating- 
gradient (AG) structure can. In such a machine the ground 
state is, except for one-dimensional (1-D) crystals, time- 
dependent. The ground state is a zero entropy state, de- 
spite the time-dependent: periodic variation of the focus- 
ing force. The nature of the ground state, similar to that 
found by Rahman and Schiffer[l], depends upon the den- 
sity and the relative focusing strengths in the transverse 
directions. At low density, the crystal is 1-D. As the den- 
sity increases, it transforms into various kinds of 2-D and 
3-D crystals. If the energy of the beam is higher than the 
transition energy of the machine, the crystalline structure 
can not be formed for lack of radial focusing. 

I. INTRODUCTION 

The ground states of crystalline beams were first stud- 
ied, in seminal work, by J. Schiffer[l] and his colleagues. 
Their work assumed a storage ring model in which particles 
are subject to time-independent harmonic forces in both 
transverse directions. Subsequently, they studied the crys- 
tallization in a time-dependent, AG focusing potential.[2] 

In order to employ Molecular Dynamics method for 
quantitative studies, we first derive in section 2 the equa- 
tions of motion for the part.icles in the rotating rest frame 
of the reference particle. 1 iualitative studies pertaining to 
the crystallization in the weak and AG focusing rings are 
presented in section 3. Section 4 describes the molecular 
dynamics calculation and the numerical results. 

II. ROTATING BEAM FRAME HAMILTONIAN 

The motion of the particles under Coulomb interaction 
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and external electromagnetic (EM) forces can be most con- 
veniently described in the rotating rest frame (z, y: 2, r) of 
the reference particle of which the orientation of the axes 
are constantly aligned to the radial (z), tangential (z) and 
vertical (y) direction of the motion, and 7 is the proper 
time. The equations of motion are derived using the gen- 
eral relativity formalism. First, we express the equations 
of motion in a general tensor formalism applicable to any 
arbitrary coordinate system. The Lorentz force experi- 
enced by the particle is constructed as a product of the 
EM field tensor and the four-velocity. Starting from the 
laboratory frame, the EM field tensor is written by means 
of the components of the EM fields. Then, tensor algebra 
is used to transform this field tensor into the rest frame. 
With a similar transformation, the metric tensor of the 
rest frame is also obtained. The equations of motion and 
the Hamiltonian can thus be constructed in the rest frame. 

Consider the case that the beam is guided by a bending 
field Ro: and focused by a quadrupole field of gradient B1 

B, = Bly, By = Bo + BIX, B, = 0, (1) 

where the magnet end effect is neglected. Assume that 
there exists no electric field so that the beam is not fo- 
cused azimuthally. The magnitude of Bo is determined 
by the velocity ,Bc and the bending radius R of the refer- 
ence particle eBoR = moc2&. Let n = -BlR/Bo repre- 
sent the strength of the focusing field. The Hamiltonian 
H(z, P,, y, Py, Z, Pz; t) of the particle system is derived as 

H = ; (p2 + Py” + Pj)--rzP*+$ [(l - n)X? + ny2]+l/c, 

(2) 
where Vc is the Coulomb potential, the time t is in unit 
of R//3yc, the space coordinates x, y, z are in unit of < 
(I G (~-,,R~/j3~y~)~/~ with ~0 = e2/m0cz), and the energy 
is in unit of p2y2e2/<. Here, < is a characterization of the 
inter-particle distance in the presence of Coulomb interac- 
tion. The equations of motion are given by the Hamilton’s 
equations. 

III. CONDITIONS FOR CRYSTALLIZATION 

In a weak-focusing machine, the constant n provides 
pure focusing (and defocusing) in the vertical (and ra- 
dial) direction. Typically, radial (or horizontal) focusing 
emerges from the difference in the centrifugal forces expe- 
rienced by the particles of different radial displacements. 
Among particles of the same energy, the difference in the 
centrifugal force always focuses the particles towards the 
reference orbit. The effective radial focusing is 1 - n, and 
“Lus if 0 < n < 1, there is focusing in both planes. 
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The situation becomes different when the beam is crys- 
tallized. In the ground state, particles circulate around 
with the same angular velocity. Contrary to the con- 
ventional case, the centrifugal force provides a defocusing 
force. Using the equations in the rest frame, it has been 
proven in general that crystalline beam can not exist in 
any dimension in a weak- focusing machine. 

In the case of AG focusing, however, the amount of mag- 
netic net focusing can easily prevail over the centrifugal 
defocusing caused by crystallization. Qualitatively, the 
conditions of crystallization can be estimated using the 
smooth approximations. Consider a ring consisting of N, 
identical lattice cells. In the rest frame, the potential pro- 
duced by the external magnetic field varies periodically 
with period T, = 27r/N, in the reduced unit. The equi- 
librium state is defined as the one when the motions of 
all the particles are periodic in T,. After linearizing the 
Coulomb force by expanding around the equilibrium or- 
bit (rj,yjljZj) f o each particle i, the transverse equations 
become 

IV. MOLECULAR DYNAMICS RESULTS 

When Coulomb interaction and AG focusing are present, 
it is impossible to solve the Hamiltonian in Eq. 2 an- 
alytically. We therefore seek numerical solutions using 
molecular dynamics. Since the Coulomb interaction is 
long ranged, an Ewald-type summation has to be per- 
formed to calculate the energy and the forces. Rahman 
and Schiffer[l] used periodic boundary conditions in all 
three directions in order to utilize the standard Ewald sum- 
mation method. However, in a realistic accelerator, the 
system may be considered infinite only in 2 direction. Also, 
the infinitely long collection of positively charged particles 
give a logarithmically diverging energy. In general, a neg- 
atively charged background has been added to the system 
to cancel this infinity. To simulate a real accelerator, we 
consider instead a bunch ol’ charged particles confined in 
a perfectly conducting, infinitely long pipe. The periodic 
boundary condition is used only in the .z direction, where 
the “supercell” of length L (in unit of <) repeats itself 
to infinity. The energy 4(xi, xj) due to two particles at 
xi and xj, after all the image charges and equivalents in ~+{u~-y2-~[~-3(xir:il.)i2]}i=~~ , other supercells are included, is 

J 

O” cosh(2zijlc/l)Jo(2fiik/L) - ldk+ 

0 exp(2k) - 1 

+ $log(xblL) + Cl, (6) 

Yi 
1 [ 
“Z-C -pyj~z 

j 13 ‘3 I) 
y=~~, 

j ‘3 
(3) 

where r;j is the distance between i and j, and u, and uy 
are the horizontal and vertical tunes in the absence of the 
Coulomb interaction. Similar to the weak focusing case, 
the crystal can only exist, when the effective transverse 
focusing is sufficiently strong i.e. ~3 > y2 and vz > 0. 
Since typically vZ z ye, it is implied that t,he AG machine 
has to operate below the transition energy. 

When the particle density is low, the equilibrium state 
is a 1-D chain where all the particles are aligned along the 
z = y = 0 axis and uniformly distributed in z. As the 
density increases, it transforms into 2-D. If the net radial 
focusing is weaker (or stronger) than the vertical one i.e. 
uz-y2 < uy2 (or $ -y2 > Y,“), the 2-D structure lies in the 
horizontal (or vertical) plane. As the density is increased 
further, the equilibrium state eventually becomes 3-D. 

To estimate the threshold density at which the 1-D crys- 
tal becomes 2-D, consider a 1-D crystal chain with the 
nearest-neighbor azimuthal distance AZ. The vibrational 
frequencies w,( Ic) in x direction can be expressed as 

w;(k) = (UZ +$~$+-L$$, (4) 
m i m 

where k is the crystal momentum. Apparently w=(k) takes 
its minimum at Ic =a, which corresponds to two neighbor- 
ing particles moving in the opposite direction. The transi- 
tion from 1-D to 2-D occurs in 2 direction at the AZ value 
where the smallest w,(k) becomes imaginary. Therefore, 
in the case that ~z-7~ < vy”, the condition for a stable 1-D 
crystal is given by the equation 

uz - y2 > 4.2/A; 

where rij = ;i - ~j, p;j = JT(G - xjj2 + (Yi - Yj)“), 
rij = Ji~;“j +pfj), b is th e radius of the pipe. The condition 
pij <<b is used and Zij is understood to be between -L/2 
and L/2. Apart from the last term which is an unimpor- 
tant constant, Eq. (6) is th e same as the formula given by 
Avilov[4], but the physical environments are different. 

The integration in Eq. (6) is performed by a 15th or- 
der Gauss-Laguerre method. The equations of motion is 
integrated by the 4th order Runge-Kutta algorithm. The 
storage ring is assumed to consist of 10 identical FODO 
cells. Within each cell, the lengths of the F, 0, D, and 
0 elements are assume to be 15%, 35%, 15%, and 35% of 
the cell length, respectively. The focusing and defocusing 
gradients R are set to be 50 and -50, respectively. This 
arrangement results in v, = 2.7, vy = 2.3, and 7~ is about 
2.5. y is set to 1.4. The time step for the integration is 
l/20 of the period T, of the focusing field. 

Notice that the Hamiltonian we are solving is time de- 
pendent, therefore the total energy is not a constant of 
motion, and the “temperature” as conventionally defined 
is no longer meaningful. Initially, the positions and mo- 
menta of the particles are randomly chosen. At the end 
of each FODO period, a periodic condition is imposed 
on all positions and momenta. The “drifting velocity” 
u, = [z(Tc)--r(0)]/Tc is th en subtracted from P, for each 
particle to correct “shearing” in the beam. Our experi- 
ence shows that this is a very effective method to “cool” 
the system down to reach the ground state. 

Here, we report the preliminary results with L= 10 and 
number of particles N in the supercell ranging from 5 to 
100. When N = 5, the crystal is l-D, and does not change 
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with time in spite of the change of the focusing force. 
When N = 10, the crystal is 2-D - a zig-zag chain in 
t,he z -f plane. The reason that the crystal is in the z -t 
plane instead of the y - z plane is because of the relatively 
stronger vertical focusing. Now the particles move with 
time - a symmetrical breathing in 2 direction. The crys- 
tal transforms from 1-D to 2-D when N goes from 8 to 
9. 

With the current lattice and beam energy, the critical 
density at which the crystal transforms from 2-D to 3-D 
is approximately twice that from 1-D to 2-D. It is trivial 
to change the parameters in the simulation as well as in a 
real accelerator so that these effective focusing strengths 
are different, and therefore the crystal remains 2-D at a 
much higher density. 

Fig. 1 show the plots for N = 40. The crystal is 3-D. 
Basically the particles form elliptical cylinders. They fall 
on ellipses when projected onto the 1: - y plane, and form 
spirals on the cylinders. At lower densities (e.g. N =40), 
one cylinder is formed, but at higher densities (e.g. N = 
60), a second one is formed in the center. 

hlany of the features discussed above are similar to those 
found by Schiffer e2 a1.[1,5] with static focusing and with- 
out the shearing force. Bowever, the ground state we found 
is time dependent The shape of the crystals and the po- 
sition of the particles are both periodic in time. The foci 
of the ellipses move as functions of time, and the principal 
axes can be either the x or the y axis. To show the dra- 
matic change of the crystal shape in one period of time, 
we take N = 60 as an example and plot four snap shots 
of the particle positions (projected onto the x - y plane) 
in Fig. 2. The particles move as much as one hundred 
percent of their coordinates in the x - y plane and then 
all move back to their previous locations after one period. 
The crystal “breathes” transversely with no drifting and 
almost no oscillation in z. 

V. CONCLUSION 

We have studied the ground state of a crystalline parti- 
cle beam under time-dependent, realistic storage ring en- 
vironment. The equations of motion for the particles are 
derived in the rest frame of the reference particle that cir- 
culates around the ring with constant velocity. It has been 
shown that in a weak-focusing storage ring, the crystalline 
beams can not be formed for lack of transverse focusing. 
In an AG focusing ring, on the other hand, the crystalline 
beams can exist in spite of the variation in the focusing 
strengths, as long as the energy of the beam is less than 
the transition energy of the machine. If y is higher than 
ye, the crystalline structure can not be formed for lack of 
radial focusing. 

The quantitative investigation is performed using the 
molecular dynamics method. The ground state is obtained 
by, at the end of each focusing period, imposing the pe- 
riodic condition on all the positions and mornenta of the 
particles and then subtracting the “drifting velocity” from 
the 2 component P, of the canonical momentum for each 
particle. 

The nature of the crystalline beam is determined by 
the density of the particles and the effective strengths of 
the transverse focusing. When the density is low so that 
Eq. 5 is approximately satisfied, the beam is a 1-D crystal. 
When the density is increased, the crystal becomes a 2-D 
zig-zag chain in the plane of relatively weaker transverse 
focusing. The critical density at which the crystal trans- 
forms from 2-D to 3-D depends on the ratio of the effective 
focusing strengths between radial and vertical directions. 
In both 2-D and 3-D cases, the time-dependent crystalline 
structure has the same periodicity as that of the focusing 
forces. The crystal “breathes” transversely with no shear- 
ing and almost no oscillation in the azimuthal direction. 
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Fig. 1 Particle positions for N = 40. (a) Projected onto 
the x-y plane. (b) The 4-z plot (4 is the polar angle). 
Circles are the positions at beginning and end of the 
focusing period. Solid lines are the trajectories within 
one period. 
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Fig. 2 Snap shots of the particle positions (projected onto 
the x-y plane) in one time period for N =60 (20 time 
slices per focusing period). 
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