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Abstract 
The longitudinal stability of intense, low momentum spread 

ion beams is of great interest today, especially in electron- 
cooled storage rings. Stability conditions are usually 
formulated as the limitations on the allowed value of beam- 
chamber coupling impedances. In the case of cooled beams, 
the effect of cooling can not be neglected if the cooling rate is 
comparable with the revolution frequency spread. The effect 
of the electron cooling can be described by the Fokker-Planck 
equation. In this paper we present a simple analytical method 
to derive dispersion relations for the longitudinal coasting 
beam instabilities using a perturbative approach. Numerical 
examples applied to 45 MeV protons in the IUCF cooling ring 
are presented. 

I. INTRODUCTION 

The interest in the longitudinal stability of the coasting 
cooled ion beams was stimulated by the number of 
publications [ 11, [2] reporting measured stability diagrams 
significantly different from what one could expect for the 
coasting beams with Gaussian momentum distributions in the 
absence of any cooling mechanism. In Ref. [3] two possible 
reasons of this difference were suggested: deviation of the 
momentum distribution from Gaussian and the influence of the 
electron cooling on the coherent stability of the ion beam. 
Both the non-Gaussian distributions and the influence of the 
cooling have been studied elsewhere [3], [4]. This paper 
elaborates on the derivation of dispersion relation in the 
presence of cooling in the closed analytical form. It is also 
oriented towards practical application for the IUCF cooler 
ring. 

II. DISPERSION RELATION 

A. Fokku-Planck Equation 
The influence of the cooling on the particle distribution 

function 1,5 can be described by the Fokker-Planck equation 
[41> [51: 2+fji?$++2&sl(r+f~ c 1 (1) dt 
Here 0 = sl(21rR) is the longitudinal coordinate, 6 = Ap/p is 
the conjugate momentum variable and t is time. The cooling 
rate X and diffusion coefficient D are assumed to be constant 
in (1). For coasting beams the stationary distribution Ic,@,J 

satisfies the equation: 

Dd@ll sls*o + - -() 
2 d6 

(2) 

The solution of (2) is the Gaussian distribution function: 

e&4 = N ,-a%2 
(2 ?T)“2 u 

where u = (D/2X)’ is the rms momentum spread of the beam 
and N is a number of particles. One can now describe the 
perturbed particle distribution function as: 

l/k(6,8,2) = po(6) + #@)ei(“e - a0 (4) 

where +I is a small perturbation of the stationary distribution 
function, n is a positive integer and B is the complex 
frequency of this coherent perturbation. Let us now assume 
that ql(S) is normalized to the number of particles involved in 
the perturbation: 

+ca 
s 

2 7rIl 
qI(6)ds = NI = ~ 

..m coo 
(5) 

where w, is the revolution frequency of the synchronous 
particle and e is the ion charge. Taking into account that 

8 = 1 Ad _ ~e“ozlZ~~ ei(ne- PO (6) 

P2 E 2 nfi2E 

where Z,, is the longitudinal coupling impedance, E is the 
energy of the beam andJ is the usual relativistic parameter, 
Eq. (1) can be rewritten to the first order as: 

i(no-Q) *, - 

Here w is the revolution frequency of the particle with 
momentum 6: ~(61 = w,(l - $,J, where q is the phase slip 
factor (r = - Aw/wJ). 

B. Dispersion relation 
Since $, vanishes at the infinity, the natural way to solve 
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equation (7) is by the Fourier transform method: 

eikbdb (8) 

which decreases the order of the differential equation (7) by 
one. The transformed equation can be solved by simple 
integration. Introducing the new notations: 

no -B 
a 

nrluoo 
n =-!L...-; q,=- 

A A 
(9) 

the dispersion relation can be written as follows: 

1 =i 
2 ia,+q,-1 

e ” x dx (lo) 
q x 

where I, is the beam current. Equation (10) can also be 
expressed in analytical form as [6]: 

Zl 2 1 = iAnqaB(iam+q;, 2)@(2; ian+q,2+2; $1 (11) 

where A is given by: 

el 
A= ’ 

2np2a2qE 
(12) 

and B(x, y), @(cY; y; z) are the beta function and the 
degenerate hypergeometric function respectively. 

C. Asymptotic Behavior 
In the case of vanishing cooling (X + 0) the dispersion 

relation (10) has to become the well-known dispersion relation 
for a Gaussian beam without cooling. In fact, recalling that 
the ratio a,/qn remains finite, after some algebra one can 
write: 

(13) 

where J(ud is given by the expression: 

+* 

J(uo) E Je-‘znhiuo’~d~ = L/A--e -“‘/2dU (14) 

0 @L-% 

Another limiting case is the coherent perturbation with a 
high harmonic number (n + 0~). This case is almost identical 
to the previous one. Cooling is too “slow” for such 
oscillations and the only stabilizing mechanism is Landau 
damping. For high harmonic numbers the dispersion relation 

reduces to ( 13). 

D. Stability Diagram 
Figure 1 shows the stability diagrams, calculated using 

Eq. 10, for the first three harmonics of a proton beam 
(45 MeV) in the IUCF cooler ring. The cooling rate was 
taken to be 70 Hz [7] and momentum spread 4. lo-‘. The 
stability diagram for the Gaussian beam, given by (13), is also 
shown on Fig. 1. 
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Figure 1. Variations of the stability diagram with harmonic 
number (ql = -2.5) for the cooled beam and stability diagram 
for the Gaussian beam without cooling. 

III. SCHOTIKY SPECTRUM 

The dielectric permeability function of the beam 
corresponding to the dispersion relation (10) can be written as: 

E, = (15) 

For a given n, equation (10) yields the frequency (generally 
complex) at which a perturbation can exist in the beam without 
an external source. For vanishing impedance or current the 
effect of polarization of the medium is negligible and we have 
E. = I. The Schottky noise power spectrum then can be 
written, using the dielectric function [l]: 

p(Q) = d_N *o(Q/n) 
n 

7r It kl2 
(16) 

The main feature of this Schottky spectrum is that at high 
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beam intensities, it is strongly deformed into a double-peak 
shape [S], corresponding to the excitation of the slow and the 
fast coherent longitudinal waves by the external electric field 
or by beam current fluctuations. The frequency of this wave 
depends solely upon the beam current and the value of 
coupling impedance. Although it is generally a nontrivial 
problem to calculate the coupling impedance, one can make 
reasonable assumptions for the low energy electron-cooled 
rings. First, assume that 1 Im Zll/n 1 % 1 Re Z,,/n ( and second, 
that Z/t/n is independent of harmonic number n. These two 
assumptions correspond to the case of space-charge dominated 
impedance, given by: 

3 = -i$+($) + 1) 
n 

(17) 

where 2, = 377 Q, a and b are diameters of the beam and 

IV. CONCLUSION 

We have calculated the dispersion relation for cooled 
coasting beams. The influence of the cooling on the coherent 
beam stability can be observed by measuring the separation of 
the two coherent peaks in the Schottky spectrum as a function 
of harmonic number. The momentum distribution function of 
the beam can be deduced from the shape of the Schottky 
power spectrum using (16). Beam transfer function 
measurements [l] can be also performed to obtain stability 
diagrams directly. 
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vacuum chamber respectively. For the IUCF cooler ring at 
4.5 MeV expression (17) gives 1 Im 211/n 1 = 4 kQ, whereas the 

[8]. 

real part of the impedance (resistive wall and broad-band) is 
typically less than 5 0 for any harmonic. Having made these 
assumptions and neglecting the momentum spread of the 
beam, we can obtain for the coherent frequencies in the ill 

absence of the cooling: 
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r31 

One can notice, that the value of AB/nw, is independent on n. 
This can be also seen directly from (13) after some algebraic 
transformations. For a cooled beam this is no longer true. In 
fact, the deviation of AB/‘nw, from a constant value for [41 

different harmonics is the easiest way to observe the influence 
of the cooling on coherent stability. Fig. 2 shows the 
frequency for coherent oscillations, given by (18) as well as 
the frequency in the presence of cooling for a 0.5 mA, 45 PI 

MeV proton beam in the IUCF cooler ring. 
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Figure 2. Frequency of coherent oscillations as a function of 
harmonic number for the beam with Gaussian momentum 
distribution in the absence (X’S) and in the presence (o’s) of 
cooling. 
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