© 1993 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of thiswork in other works must be obtained from the |IEEE.

Analytic Criteria for Stability of Beam Loaded R.F. Systems

Shane R. Koscielniak, TRIUMF Vancouver B.C. Canada

Abstract

This paper presents the instability analysis of a beamn-
loaded radio-frequency system with beam phase-loop
and cavity tuning-loop for both accelerating and non-
accelerating beams. The case of voltage-proportional feed-
back around the cavity is also included. The symbolic ma-
nipulation program SMP [1] was used to expand and sim-
plify the Routh determinantal conditions for a fifth order
characteristic polynomial. The paper is a much abridged
version of an internal design note [2].
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The disposition of steady state phasors is as shown above.
We adopt the notation of Reference [2]. The cavity volt-
age is V(1)ed*t and the total current driving the cavity is
I']‘(f,)(“jut, where ¢ indicates time and w Is the drive an-
gular frequency. Bold face indicates complex quantities,
and ordinary type denotes scalars. We employ dot no-
tation for time derivatives. The cavity fundamental res-
onance 1s modelled as a parallel resonance LCR circuit.
Let Q.. = 1/\/2—(—' be the resonance frequency and o =
Qres/(2Q) = 1/(2RC) be the half-bandwidth. We write
the voltage and current as the sum of steady state parts
V" = V¥V and Ipp = 1%¢7¥7  and small time dependent
perturbations. We use 3 to denote steady state phases and
¢ perturbation phases. Let ¥ = ¥y — thp .

A, Steady state

We must specify the steady state generator current Ig =
19e3%s and beam image current Iy = Ie/¥* which sum
to form the total current I$. The beam current is =~ 90°
out of phase with the cavity voltage; depending on the
synchronous phase angle yp. We set jip, = 0 for a non-
accelerating bearn. Hence i, = #(m/2 + p3) and the —
sign applies below transition energy and the + above. We

adopt the dimensionless current ratios Yy = [8/[8 and
Y, = I0/1), where [) = V?/R . The components obey:
I = Ygcosy — Yysinp,

tan¥ = Yjcospy — Yysiny, .
From this follows the detuning tan ¥ = (22 — w?)/2aw .
Until we choose a definite value for 1, there is no direct

relation hetween tan ¥ and (Y3 , ).
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B. Non steady state

_ Let us assume the “slow approximation” V € wV and
Iy <« wlr. We allow for a varying resonance frequency
Qt) = Qo(t) + AQ(t). We introduce the perturbation vec-
tors e as follows: V =V°(1 +ey) and I3.(1 +ep) =

= Ig(l +ey) + I)(1 +e) . The dimensionless components
z; and ¢, of the vector e, = (z, 4 j¢,) are amplitude
and phase modulations, respectively. The cavity response

is modelled by:
zv{l 4 s7:) + ¢y tan¥ + Yy (dgsin, — z4 cosby) +
+ Yy (2 sin iy — @pcos pt) = 0

dv(l +s7e) — zvtanl — Yy(dgcostpy + 2z 8in 1) +
+ Yolzp cos pip + dpsin ) = 7.AQ .
Here 7. = o~ ! is the cavity time constant, and time deriva-
tives are replaced by the Laplace operator s .

C.  Beam rigid bunch dipole motion

Suppose the ideal drive frequency is synchronous with
a particle travelling with the equilibrium. However, as a
result of modulations the cavity phase may advance or lag
by an amount ¢y . Likewise, the beam centroid may differ
from the ideal phase by an amount ¢;,. Suppose the cavity
has relative amplitude modulation zy .

To first order in perturbation amplitudes, the Laplace
transform, of the beam energy deviation J E is:

s0FE = Ky[zv sin g, + (@v — ¢p) cos pp] .
Because of the energy deviation, the phase error ¢, will ad-
vance at the rate: s¢p = Ko FE . The product VK x Ky =

2, the synchrotron frequency sans the usual cos yy, term.
D. Stability conditions

The system response contains only self-damped oscilla-
tions, when all zeros of the characteristic polynomial lie
in the left half of the complex plane. Necessary conditions
are for the coeflicients of s* and the Routh-Hurwitz cri-
teria [RH(7) for ¢ = I, 2,...n+41] for combinations of the
coeflicients to be greater than zero. We shall omit trivial
conditions such as 7. > 0.

II. CAVITY AND BEAM DIPOLE MODE

This is the case originally treated by Robinson [3]. The
model assumes that the generator current is maintained
by an ideal feed-forward.

Characteristic polynomial

(2[cos py sec? W — Yy, tan U] + 297 cos(jup)7e 5 +

+ [sec.‘z U+ (Q,7.)? cos wp]s? 4+ 27150 4 st
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Routh determinants

RH({4): tan¥ > 0, hence ¥ > 0. If RH(4) < 0, then the
cavity is detuned in the wrong sense.

RH(5): cos prpsec? ¥ —Y, tan ¥ > 0 implies the Robinson
limit: ¥, < 2cos jp/sin 2% . If RH(5) < 0, the bunch sim-
ply wanders. Substituting the matched generator condition
(14 = 0) gives the special case Y, < 1/sin .

[II. (CAvITY, BEAM DIPOLE MODE, PHASE-LOOP

The model of section Il is supplemented with a beam
phase-loop intended to damp bunch dipole oscillations.
We assume that the feedback has the response of a pure
mtegrator, and modifies the generator phase ¢4, that is
¢y = (Np/s) x (dy—dv ). If there is an r.f. feedback around
the cavity, this loop modifies the demand phase ¢g4.

Characteristic polynomial

Q?[cos pu sec? U 4 NyTesin pp Yy sin vy — Yy tan W]+
+[N, se(‘Q\IJ+I\',, Y, (sin ptp—cos jiy, tan \Il)+2$'2rf cos(pty)Te] s+

+[sec? W K, 7o (14 Yy sin pp)+ (270 ) 2eos i) 87427087 77257
A necessary condition for stability is that the coeflicient of
s be > 0. Unless tan ¥ < tanyy and K, > 0, we find a
condition for ¥, which resembles the Robinson limit;

2 2027,
sin2¥ K, tan W
In most cases this limit is subordinate to RH{5) below.

¥, < if j, =0.

Routh determinants

RH(3): 2 4+ Apre[cos2W + Y, cos Usin(W + )] > 0.

This condition allows a domain of stability with W+, < 0.
The damping provided by the phase-loop can overcome
(partially) the instability caused by incorrect detuning.

2

RH(5): cos prpsec® W + Kpresin Yy sin g — Yy tan ¥ > 0.
Unless ), %0, > 0 there is no change to the Robinson limit.

RH(4): 0 < 2K, sec? Wisec? W+ Y, (sin pp —cos jp tan W)+
+(QSTC)2 cos pip{cos 20 + tan p, sin 2W)]+
+21&',,(5237'C)2(‘os e Yo (cos pup tanW —sin ;Lb)+4Q§T¢ Yy tan¥+
+7 1\';)“)[(1 + Yy sinpup)? — (Y sin ¢ tan W)?] .
A sufficient condition for RH(4) > 0 is tan ¥ = tan p,.
Alternatively, we may substitute %4y = 0 and so find
RH(4) > 0 at all points on the matched generator curve.
Finally, we note that g, = 0, tan¥ < [|/tanty and
RH(5) > 0 are sufficient conditions for RH(4) > 0.

IV. (CAVITY, BEAM DIPOLE MODE, AND TUNING LOOP

A feedforward (or program) accomplishes the bulk of the
cavity tuning. The tuning loop endeavours to bring the
generator current and gap voltage vectors in-phase by
modifying the cavity resonance frequency. The feedback,
for small oscillations about the program set-point, 1s mod-
elled by a pure integrator: 7, AQues = (K¢ /5) % (¢4 — dv).
Since there are no other loops present, ¢4 = 0 for all time.
The loop will tend to reduce the phase error to zero (i.e.
¢y = ¢v) provided Ky is positive.

Characteristic polynomial

fo cos pup K (1 — Yysin ) + 1.8t + T(? o4
+02[cos puy (sec? ¥ + 7. K,) — Yy tan ¥]s+
F[ K, 4207 cos(jup) 7] 5% + [sec? W + 7. Ky + (82 7o) % cos i) s
A necessary condition for stability is that the coefficients
of 5! be greater than zero, and this implies

1\} Te
tan ¥

sin 2¥

However, this condition is subordinate to RH(5).

Yb<c‘osm,|: } if¥>0.

Routh determinants

RH(3): 2sec? W + Kym. > 0.

RH(4):

Ke(2sec?W + K,r.) + Yy Q27 [dtan ¥ — K7 sin 24] > 0 .
This condition is usually unimportant for positive detuning
(¥ >0), and is subordinate to RH(5) for negative detuning.

RH(5): This expression can be solved for the beam current
%, and 1s found to factor:

s < [0.5 K, sin 2/1;,(59(‘2\1/ + T Ny) — Ky tan W+
+Q? cos(pp)7e (2tan W — 0.5, 7 sin 2 }] x
(2sec? W + 1\'}7})/9?7}(2 tan W — 0.57. K sin 2p)° .
Since the beam current (Y,) 1s positive, this leads to a
quadratic constraint on the tuning loop gain.
We now simplify the expressions to a non-accelerating

bearmn, to make a correspondence with Reference [4]. In the
limit ¢, —> 0 the stability criterion can be written:

Ky 2 Ki7e
2(23’7}} Lin2\ll * t.an\I']
The tuner gain condition, for +ve and -ve tuning angles,
can be surnmarized (K; — 2Q%r.) x ¥ < 0. The instability
regime where Y, < 1, ¥ > 0 and K; > 2&237} has been
experimentally observed in the PSB [4].

Yb<[1

V. TUNING LOOP AND BEAM PHASE-LOOP

We supplement the previous model with the ideal phase-
loop; s¢g = Kp(¢s—dv ). Because stT.AQ s = Ki(dg—¢v)
there is the possibility for cross-coupling to the tuning loop
through the cavity-voltage phase-perturbation .

Characteristic polynormal

Qf cos p Ky (1 — Yiysin py) + 27 s+ rfs‘r’+
+{Q%[cos py (sec® ¥ 4+ 7. K;) — ¥, tan¥]+
!\’}[1\‘}4—(237} sin pp{Ys cos pp—tanW¥)] }s+{ N, +20Q% cos pyTe+
+K, [secz\ll + 7 K¢ + Yy(sin g, — cos jup tanW)]}s? +
+sec? ¥ + 7. K; + (Q, 1) cos juy, + T Kp(1 + Yysin )]s> .
The coefficients of s' and s% have the possibility to change
sign when W > 0. For brevity we give the limit p, = 0.
2 Kl + K,/92)
sin 2V tan ¥

Y, < when g, =0, ¥ >0.

The coeflicient of s? is automnatically positive if tan ¥ <
tan jip; alternatively,
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. 2 22T, + K1+ 1K) .
Y < — £ L fpup=0,% .
! sin 2 + K, tan ¥ i e =0 >0

Routh determinants

RH(3) factors and simplifies to: 24 1. Ky cos 29

+Yu7e Kp cos Usin(W + go) + 7 K (1 — K1) cos? ¥ >0,

This condition is reminiscent of RH(3) in section IIl and
has the effect of allowing some negative detuning. We
should also like RH(3) to be satisfied in the limit ¥, — 0;
and for K, 7. > 1 this implies the approximate condition:
Kt < 2 — sec?W¥ <1.

RH(4): The Routh determinant has many terms, but sim-
plifies under the substitution tan ¥ = Y}, cos 4, as occurs
when the generator is matched (v, = 0); one finds a cu-
bic condition in Yy. A suflicient stability condition is that
the coeflicients of Yb“, vl v2 Yb"s be greater than zero.
Only the coeflicients of ¥,” and Y,! have the possibility to
change sign; and so, by inspection, suflicient conditions for
RH(4)> 0 are 7., < | and K, > K;.

RH(5): The Routh determinant has many decades of mono-
mial terms. Under the condition 1, = 0, there results a
quintic polynomial in Yy,. The condition g, = 0 reduces
the system to a quadratic in Y? ; the coefficient of Y;!
is unavoidably negative, and so limits the maximum beam
current. The allowed domain of Y}, will be maximized when
the coefficients of ¥,? and Y,? are positive. By inspection,
Kite < 1 and K, > K; is a sufficient condition for both
coeflicients to be positive.

RH(6): 1 — Y, singy > 0 imposes a further constraint on
the beamn current, which is the same as the no-loop case
for a matched generator.

A, R.F. feedback around the cavity

Including a voltage proportional feedback around the
cavity modifies the equations. This type of feedback, as
discussed 1n Reference [5], requires a high power sum-
ming junction since it 1s the entire r.f. signal which 1s
fed back. The current I, becomes the sumn of the de-
mand current I5 and the feedback current I; = —hly.
It 1s found that the characteristic polynomials are identi-
cal with those of sections II, IlI, IV, V except with the
substitutions: 7. = 7./(l + h) , tan¥ = tan ¥ /(1 + h) ,
Y, = Yu/(1 + h) made throughout. This being so, we can
take over all previous results regarding the polynomial co-
efficients and Routh-Hurwitz determinants. Generally. the
stability limit is enhanced by a factor (1 + A).

V1. CAVITY, BEAM DIPOLE AND QUADRUPOLE MODES

Robinson type stability for dipole-quadrupole mode cou-
pling has been investigated in Reference [6], for the case
s, = 0. We generalize to the case of an accelerating beam.

A, Rigid bunch quadrupole motion

Let bunch half-length be © = ©¢+6, the sum of a steady
state part ©p and a small perturbation 8(¢). The Laplace
transform of the envelope oscillation can be derived from:

s = Qf W and sdW = —4dcospup x 8 — zyOgcos i .
where the variable dW is conjugate to €. To complete our
description of the beamn coupling to the cavity, we give
the relation between 6 and amplitude modulation of the
beam current z,. To first order z, + Fy x # = 0 . The form
factor Fiy depends on the bunch shape, A. Let J,, be Bessel
functions. For the functions A = (0% — x?)® with a > 0,
Fo((")o) = (QCY -+ 1)/(")0 - Ja——1/2((;)0)/Ja+l/2((':—)()) .
For example, if & = 1 then Fy &~ 0y/5 when ©¢< 1 .
Characteristic polynomial
The polynomial is too lengthy to reproduce here. We con-
sider g1 > 0, in which case only the coefficient of s? has
the possibility to change sign when ¥ > 0; this umnplies
a beam current limit, but the condition is subordinate to
those below.
Routh determinants
RH(3): 2sec? ¥ — Yy Fo®q(€257.)% cos pysinpy > 0 .
This constraint is quite severe for small tuning angles and
long bunches, but is subordinate to RH(6).

If RH(3)> 0 then a sufficient condition for RH(4)> 0 is:
tan ¥ > sin 2[5(,F0@0(1+2Q§T(.2 cos pip } /2(1+ Fu®©q cos> Hp) -
RH(5) simplifies very slightly to a condition with 24 mono-
mial terms, and there is no simple interpretation. In the
limit of large tuning angle, short bunch length, and Q7.
order of or less than unity, we find the approximation:
2tan¥[2cos jup — Y sin 2W] + FuOg cos jip[16 cos? jy tan W+
+45in 2pp sec2W42Y5 (2 cos pu, —sin g tan¥ —4sin* )] > 0.
The leading term in tan ¥ contains the Robinson limit.

RH(6) factors; if RH(3) > 0 and RH(4) > 0 this leaves
the new condition Y, < 3tan \Il/[FgG)o cos jtp] which poses
a severe constraint at small tuning angles unless y 1s large
or the bunches are short.

RH(7): 4(cos pp sec?W — Y, tan¥) + ¥, Fo©g cos pup(sin g1y —
cos ptp tan¥ + Y;) > 0. The term in Y2 in this quadratic
will favourably modify the stability compared with the
Robinson limit. However, for small tuning angles condition

RH(6) supersedes RH(7).
VIIL
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