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This leaper presents t81ie instahilit8y analysis of a hearr~- 
I(-~a(lr-~l r:ltlio-frrcllirncy sydem wit,li learn phase-loop 
iilld c*avit y t)uning-loop for both accelerating and now 
a(.(-c~lcratirlg l)earns. The c-ase of voltage-l,roportional feed- 
Ijac-k around the c-avity is also included. The symbolic ma- 
niprdat,icotl program SM F’ [I] was used to expand and sim- 
l)lify 1.11~ Routli cleterminantal contlit,ions for a fifth order 
c41ar;tcteristBir 1)olynomial. The j)aper is a much alAdged 
vcarsion of an int,ernal clesign not*r [2]. 

1. HEAM LOADING; EQCATI~NS 
generator current 

Ym 
1, cavity 

__-- 
?, __ -Y;- voltage 

” 
beam 

F 

3 YL 
image 
current 

* tuning angle 

r 
1, 

‘The clisl)osit,ion of Aeady st.at,e phasors is as shown above. 
\Vr> adopt, the not,at8ion of Reference [2]. The cavity volt,- 
agr is V(!)P jwt and die t,ot,al c.nrrent, driving the cavity is 
17.(t)‘.J‘&r, where t intlicatcs t,iIlic arid w is the drive ari- 
g111;rr i‘wqI~fwq. hid fat.c iritlirat,es c-ornplex qrlantit,ics, 
antI ~~r(liiiary tyl~ clenot,es sdars. We employ dot no- 
t,at,ic,rl for tilllc tlcrivatives. The cavity fundamental res- 
OII;~I~I‘C’ is ~r~otlcllcd its a j~arallel resonance LCR circuit,. 
IA3 II,,,y = I /Jz;T;’ he the rrsonanc:e frequency and 0 = 
S2,, q/(2(J) = 1/(2KO’) be the half-bandwidth. We write 
t 11~ vl,lt8age arlcl c’urrent, as t,lie sum of steady state j>art,s 
v” = \/‘lf&JV ;iIl<l 1; = @(.eh ) and small time dependent 
lBertrlrl);ttions. WC IISC J1 t,o clenok steady state phases and 
cp ~wrt,~irl~at~inn phases. Let 3 = $1, - $5~ 

‘4. ,sttwl~/ .stati- 

WC nlnsf, sj)ecify the steady state generator current, 1: = 

j”+Yv anti I)earu imagc current 1: = Itri@b which sum 
!I 

t,o Tc,rlll the t,ot8al c.urrcnt, I$. The beam current, is x 90’ 
out, of phase with the cavit,y voltage; depending on the 
SyIldlroIl~~IIS phase mglf’ j/b. WC? set /&[, = 0 for a non- 
al‘(.eler;tt,ing barn. Hence Q’Q, = *(r/2 + pb) and the - 
.-;igii a1)plicks Ix~low transit,ion energy and t,he + above. We 
a,lopt, i lie ~linlensioriless c.urrcnt, ratios Yg = IyOjI10, and 
Y[, = 1;; / 1; , where I:. = \“‘/K The component,s obey: 

1 = Yg (:os?)y - &sin/& 

hl q = I<, ~0s IL& - Yr, sin ~5~ 

Frcilll t,lbis follows t,he tletuning tan \Ir = (12’ - Gj2)/2cYw 
I;nt,iI \I‘(’ ~~1100s~ a (ldinit,e value for qby, there is 110 direct, 
ri‘l;tt ion Idweeri tan \I[ and (15, ,/Lb). 
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A. No11 stm1y statr 

Let us assume t,he ‘Xlow aj)proxir~lat~ion” V << LJ+ and 
i7. < wI,r. We allow for a varying resonance frrquency 
n(t) = a”(t) + L&(t). w ‘e introtlric-e the pertnrl,at8ion vex- 
tors e as follows: V = VO( 1 f e\,) and It7( 1 + c?,l,) = 
= I;(1 +q,) +I;(1 +Q) Tl I(% c iIncnsionIess c~omponen~s I 

2, and 4,. of the vector e, = (+ + j&.) arc’ atrlplituilc 
and phase modulations, respc<.t,ivply. The c.avit,y response 
is motlelled hy: 

zv( 1 + srC) + 4~~. tan* + I’,(~$~siri l/l, - + ~os+~~) + 

+ Yt;, (q, sin pr> - 01, (‘0s pb) = 0 , 

+\/(I + *srC) - zv tanq - L;($scOsll,g + ~,,sin7/:~,) + 

+ YI,(Q cob pb + c#I(, sin pt,) = r,.Al2 

Here r,. = Q-I is the cavity time cordant, and tinle (Ieriva- 
tives are replaced by the Laj’lace operator s 

CT Berm rigid burd~ dipole f~~otio~~ 

Suppose the ideal drive frequency is synchronous with 
a particle travelling with the eqnilil~rium. However, as a 
result of moclulat~ions the cavity phase may aclvanc~e (or lag 
by a11 amount8 c$L,. Likcwisc, the bean1 cent,roid 111ay tliffcr 
from the ideal phase by an amount8 ~$0. C;upl~~sc t,lic c-avit,y 
has dative amplitude lrlorlulatiori -xv 

To first. order in perturbation atnplit~utles, the I,al~l;~c~, 
transform, of the I)eam ericrgy tlcviat,ion SE is: 

s 6E = K1 [ZV sin 111, + ($\I - ~$b) ~0s /lb] 

Heclause of the energy deviation, the phase error $b will ad- 
vance at the rate: s q5b = Ii’zbE . The produd dm = 
R,, the synchrotron frequency SO~U the usual cos /I(, t,erm. 

D. Stnbility conditions 

The sydem response cont,ains only self-dampetl oscill:i- 
tions, when al1 zeros of the characteristics polynomial lie 
in the left half of the complex plane. Necessary condit,ions 
are for the coefficients of s’~ and t&lie Rout,h-Hnrwit,z cri- 
teria [RH(i) for i = 1, 2, .n+ I] for corAinat,ions of the 
coefficients to be greater than zero. We shall omit trivial 
conditions such as rC > 0. 

II. CAVITY ANI) r3mi-d I)IPOLE Mom 

This is t,he cast originally trest,ed by Robinson [:I]. The 
model assumes that, thr gcncrator c-urrcnt, is rrlaintsincc-I 
by an ideal feed-forward. 

(%aracteristic j>olynomial 

ilf[cos /lb se? @ - Yb tan *I] -+- ‘L62: Cos(jfb)~c .s + 

+ [sd 9 + (&&)” <-os/Lb].~2 + 27,. .? + 7,:” h4 
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RH(4): t.att \I, > 0, hence 0 2 U. If RH(4) < 0, then the 
c,avit.y is detrttied in t,he wrong sense. 
H H (5) : l-o:, /L(, SW2 \II - Y(> tar1 @ > 0 implies the Robinson 
litttit,: I;, < 2 cx pr)/sin 2Q If RH(5) < 0, t,he bunch sim- 
I11y waticlers. Substitjtttittg tlip matched gmwator c-otitlitioti 
(fii, = 0) gives t,ltc special C‘BSF ,i < l/ sinpb, 

IIt, ( :AVITY, HEAM DIPOLE MODE, PHASE-LOOP 

The tttodel of s&ion II is suI~plerrt~ttted wit,h a heart-t 
phasr-loo~~ ititcntlctl t.0 clatrrp hitic-11 clipole oscillations. 
LYP asstt11i~ that the feccll~ac~k has the response of a pure 
ittt81-lgrat,or, anal trtotlifies t,ltc gctterat,or phase @g, t,hat, is 
C/5!, = ( IiI,,/S) x (66 - dv ). If t,t tere is an r.f. feedback around 
ttir i.avit#y> t.tiih loop modifies the demand phase 4d. 

(:Ii;trac%3ist,ic- I)olynotnial 

I2~[ros 11~ srv2 9 + Ii,,r,. siti p(,Yg sin qjy - I’& tan 3]+ 

+[I<,, src-“*+I<,, Yb(sin pr,-c’os /II, tan *)+X2: C-os(pb) r,]s+ 

+[w2\Il+A&( I+\ ‘i sin ,u~,)+(~~,~,)~cos ~L~].s~+~~~~;~+~~.LS‘~ 

:Z tir~c~r~ss;q c-oti~lil~ioti for st.al>ilitjy is t,ltat, 6lic coeffident, of 
s’ IJC > 0. IJnless t,att 3 5 tanpb and lyp > 0, we find a 
c~curi~litic~tt fa.lr ,i which resernl~lrs the Rol3itison lintit,; 

I;.<&+ 2qr< 
I<, tjatl \[I 

if /lb = 0 

In rr~ost~ CRSPS t,ltis litrtit, is s;tl,ortlinate to RH(5) below. 

Rorttti detertrtiriatits 

RH(3): 2 + 1<t,rC[cos2q + Y~~osQsin(Q +/lb)] > 0. 
This c-ottclit,ion allows a dotuaitt of stal,ilit,y wit,h \Il+pb < 0. 
‘I’li~ datttpitig I)rovirletl hy die phase-loop can overcome 
(I)artially) t#lie ittst,al>ilitjy c-aused by inc*orrect clet,ttning. 

Rfl(5): (‘05 pr, SW” 9 + l<,,TC sin pb1’, sin 7/jils - Yb t,an Q > 0. 
I!nlrss I~‘~,x;L~, > 0 t,ltere is no change to t,he R.obinson litrtit. 

HH(4): u < 2/i,, SW2 W[: sw2 \I, + Yb (siti /lb -03s pb t,ari O)+ 

+(12,r,)’ c-ospb(c-0s 29 + tan 116 sin 23)]+ 

+2f<,(12,T,)2~‘o~ pt,\6(cos pl, tan*-sin /-L~)+~Q~~~Y~ tan\Ir+ 

+Tcfi,f[( 1 + Yb sin fLb)2 - (I/y Sit1 ‘t/>y tat1 q)“] 

A sttfkiticient (wtiditioti for fiH(4) > 0 is tan q = tan /lb. 
Alternatively, we may srtbst8itttte 0, = 0 and so find 
fiH(4) > 0 at all points on the rnat8ched generator curve. 
Finally, we not,e that, pb = 0, tan 9 < I/ tan djs and 
HII(T,) > 0 are sufficiettt conditions for RH(4) > 0. 

Iv. (‘AVITY, HEAM DIPOLE MODE, AND TUNING LOOP 

A feeclforwartl (or 1)rograrrt) arc~otrtI)lishrs t,he I)ulk of the 
c,avity t,unittg. The tuning loop endeavours to bring the 
grttcratSor current, and gap voltage vect,ors in-phase by 
trtoclifying the cavity resonance frequency. The feedback, 
for sn~all oscillations about t,he program set-point,, is mod- 
ellcd by a pure intqrator: 7C AR,.,, = (K,/s) x (4, - 4”). 
Sinc,c t,herc arc no other loops present,, $y = 0 for all time. 
The loop will t,encl tjo reduce the phase error t,o zero (i.e. 
c$!, = q51,) provided Kt is posit,ivc. 

(Sara&=t-istic t>olvnotttial 

12: cos 116 Iit (I - Yb sin FL,,) + 27,..s4 + q? s5+ 

+q[cos~L&ec’\I, + r,K,) - sit, tat1 3]ss 

+[Ii,+212: Cos(~l~)~~].s”+[~eC~~+~,Ii~ +(ll,~,.)z(~ohp~,]~s”. 

A necessary ~oticlitioti for stability is t.tta(. t,tte c-ocf1ic~iettt.s 
of s’ bc great,er than zero, and this implies 

Y6 < ~OsplJ 4&’ + - 
[ 

Iit r, 
tan \[’ I 

if\I,>O. 

However, this c~otttlit,iott is su1~orclittat.r tn RIt(5) 

R,outh detlertriitiants 
RH(3): 2 se? 9 + Ii,r, 2 0 
RH(4): 
hst(2se?@ $ lx’pc) + ,i i2irc [4 hi @ - Lip, Sin ‘Ltlt,] 2 (1 

This condition is usrtally unimportant. for positdive detZunittg 
(Q > O), ancl is srthortlittat8c t,o RH(5) for nrgat,ive det~tttting. 

RH(5): This expression c-at1 be solvctl for t.hc l~~ll (*torrent, 
Ybl and is found to factor: 

‘;tl < [0.5/i, sitt 2jrb(s~c”Q + 7-CI<t) - I\-, t#ati *i 

+S2f cos(pt,)r,(2 tan Q - 0.51<,7,. sin 2pb)] x 

(2sec2\Ir + Ii,r,)/12&(2 t> an \I, - 0.5r,li, sin 2p,,)’ 

Since t-lie beatrt c-urrctit, (1;) is positive, t,liis lcads t.o a 
quadratic- constraint, on t.hr t,itning loop gain. 

We now simplify the expressions t.0 a tioti-a~c.rlerat,itig 
beam, to make a c-orresponclenc-e with Refereru [4]. In the 
limit pr, --+ 0 the stSabiIit,y criterion can IW writ,t cn: 

Yi< [I-&][&+S] 
The t,utter gain cotttlitjiort, for +vc atitl -vc t,tttiitig atiglr3. 
c-an be sutnmarizrtl (lCt - 252zr,) x Q < 0. The insta1,ilit.y 
regime where 1; << 1, Q > 0 and lit > 212:r, has I)eert 
experiment.ally observed in t,he F’SH [4]. 

V. TUNING 1,001’ A~‘LI BEAM PHASE-LOOP 

We suppletrtettt the previous tnotlel with the ideal phase- 
loop; .sq6s = Kp(&,-d\,). Because srCAS2,,, = l<t($y--giv) 
there is the possibility for cross-coupling to t,he tuning loop 
through the cavity-voltage phase-prrtltrl,at,ion (r;,. 

( :haracteristic l,olvnorrtial 

s2; cosp[,Kt( 1 - Y&sin /lb) + ‘LT, s4 + +?+ 

+{IL~[coSp~,(scc3”\I, + 7-<1Ct) - Yti tan*]+ 

Kp[Iit+12~rc sin pb(Yb ~0s IL,,-t,an~)]}.s+{ ICt+‘LS2f (-OS pb~C+ 

+lip[SW2~ + TC,I<, + Yb(sittpt, - cospb tan\lr)]},7” + 

+[se(-“Q + Tclit + (12sTc)2 COsp~ + rclip( 1 + & sinp~~)].s” 

The coefficients of s1 and s2 have t,he I>ossiI)ilit,y to change 
sign when @ > 0. For brevity we give the limit, /Lb = 0. 

Ye&+ 
fit(r, + li,,/QB) 

t,an \I’ 
when pb = 0 , \Ir > 0 

The coefficient of s2 is aut,otnatic-ally posit,ive if t,att \I, 5 
tan pb; alternatively, 
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Y/j, < ‘L + m;r, + I\‘t(l + TCr<,) 
sin 2Q I<,, t,an @ 

if jib = 0 , 9 > 0 

Rout11 dtderminants 

r{f3(3) fat-tars and simplifies to: 2 + rClip cos 2\J! 

+Y~,T~.K,’ cos Q sin(@ + pb) + r, I<,( 1 - 1\r,,~,) cos2 Q 2 0 

‘l‘his c~ondit,ion is reminiscent of RH(:j) in section III and 
has the eflect, of allowing some negative detuning. We 
shoul(l also like RH(13) t o b e satisfied in the limit Yb -+ 0; 
and for Ix’,,~, >> 1 this implies the approximate condition: 
fitTc < 2 - SPC”9 < 1 

RH(4): ‘I‘he Routh det,erminant has many terms, but sim- 
plifies WidPr the S~Itx-iti~~~i~lion t.an q + Y& cos /Lb: as occurs 
wtirn t,he gcnrrat,or is matched (7/>s = 0); one finds a cu- 
l)ic, c-ontlition in Yb. A sufticient, stability condition is that 
tlif> c~oefic~ient,s of Yb”, Yb’, 1:’ j 1;; he grfder than zero. 
Only t,he coefIic.ients of Yo” and YL have. the possibility t,o 
l~hiltl~P sign: and so, by inspection, sufficient, conditions for 
RH(4)> 0 are r,K, < I and Ii’, 2 IITt. - 
RH(5): The Routh det,erminant has many decades of mono- 
niial t.erms. ITncler the condition 7/js = 0, there results a 
cluint,ic polynomial in Yb. The condition pb = 0 reduces 
t,lie sydrrri to a quadratic in Y6’ : the coefficient, of Yb4 
is unavoidably negative, and so limits the maximum beam 
current,. The allowed domain of Yb will he maximized when 
he co&c-ients of Yz and Yb2 are positive. By inspection, 
lit r, 5 1 and flvF 2 1~‘~ is a sufficient condit,ion for both 
(-orflic~ietits t,o be positive. 
ItHjtj): 1 - 15, sin pl, > 0 imposes a further constraint on 
the I)ram current,, which is t,he same as the no-loop case 
for a niat,che(l generator. 

A K. F. ftwlbnck nrour~rl th cnuzty 

Including a voltage proportional feedback around the 
cavit,y modifies the equations. This type of feedback! as 
tliscussecl in R.eference [S], requires a high power sum- 
llling junc*tion since it, is the entire r.f. signal which is 
fed back. The current I, becomes the suin of the de- 
mand current I): and the feedback current I, = -hIv. 
It is found tShat, t,he charat-teristic polynomials are irlenti- 
cd with those of sections II, III, IV, V except with the 
suhst,itutions: r, * rC/( 1 + /I) , tan 3 j tan 9/(1 + 11) , 
Yb * Yb/( I + 1) 1 made throughout. This being so, we can 
take over all previous results regarding the polynomial co- 
rliic~ients and Routh-Hurwitz determinants. Generally, the 
stability limit, is enhanced by a fador (1 + /I). 

VI. (:AVITY: HEAM DIPOLE ANI) QUADRUP~LE MOI)ES 

Robinson t,yl>e stability for dipole-cluadrupole mode cou- 
l)ling h;ts llcen investigated in Reference [tj], for the case 
I//, = 0. We generalize t,o the case of an act-elerating beam. 

A. Kl~ptl bu11cl1 qufldrupolr rrlotlorl 

Let I)unc+ half-length be c-> = (+o +8, the sum of a steady 
stat,r [‘art, (30 and a small perturbation O(t). The Laplace 
t,ransform of t,he envelope oscillation can be derived from: 

s 0 = f2p 6W and s 6W = -4 cos /lb x 0 - fC’(& cos /lb 

where the variable SPV is conjugate t,o B. To complete our 
description of the beam coupling to the cavity, we give 
the relation between 0 and amplit,udr modulation of the 
beam current ~6. To first, order .q, + Fo x B = 0 The form 
factor Fo depends on the hunch shape, X. Let J,, be Bessel 
furlctions. For the fundions X = (0; - .r2)n with (Y > 0, 

Fo(O0) = (Sk+ 1)/O” - J,-i,z((-)o)/J,+I,~((-)~~) 

For example, if Q = 1 then Fo z (30/S when (3,) < 1 

Characteristic polynomial 
The polynomial is too lengthy to reproduce here. We COP 
sider /lb > 0, in which case only the coefficient8 of s2 has 
the possibility t#o change sign when \Ir > 0; this iml)lies 
a beam current, limit, hut tJhr condition is suhortlinate to 
those below. 
Routh determinants 

RH(:{): 'LSf??~ - YbFoC-)c,(12,r,.)2 ~.OSp~Shlp(, > 0 

This constraint is cluit)e severe for small tuning angles and 
long bunches, but is subordinate to RH(6). 

If RH(J)> 0 th en a suflicient condition for RH(4)> 0 is: 
tan q 2 sin 2pbF’Oo( l+‘Z2~q? cospi,)/2( ~+Fo(+~~ ~0s’ pb) 

RH(5) simplifies very slightly to a condition with 24 mono- 
mial terms, and there is no simple interpretation. In the 
limit of large tuning angle, short, hundi lengt,h, and I2,r, 
order of or less than unity, we find the approximation: 

2 tan9[2 cos pt, - ,i sin 2*] + Fo(-l-)cl (‘0s pb[ 16 cos2pb tan@+ 

+4 sin x/Lb sw2~+‘LY&((z cosj&-sin [Lb tanq-4 sin”\lr)] > 0. 

The leading term in tan Q contains the RolGnson limit8. 

RH(G) factors; if RH(3) > 0 and RH(4) > 0 this leaves 
the new condition Yb < 13 tan */[FoCilo cos pb] which poses 
a severe constraint, at small tuning angles unless pb is large 
or the bunches are short,. 
RH(7): 4(cos pb sec’9 - Yb tan*) + Y[,Fo& cos pb(sin p, - 
cosp6 tan* + Yb) > 0. The term in 1 i2 in this quatlrat,ic 
will favourably modify the stability compared wit,h the 
Robinson limit. However, for small t,uning angles contlit,ion 
RH (6) supersedes RH (7). 
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