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Abstract 
The longitudinal beam-beam interaction, which can lead 

to incoherent heating, synchrobctatron coupling, and coherent 
longitudinal instabilities in circular colliders, is examined. 
This analysis discusses two types of energy kicks, those due 
to the transverse particle motion coupling to the electric 
portion of the transverse kick, and those derived from the 
inductive electric field induced near the interaction, which is 
obtained from the transverse kick through use of a 
generalization of the Panofsky-Wenzel Theorem. Implications 
for low energy e+e- colliders (cp & B factories) with beams 
crossing head-on, and at finite angles, with and without crab 
crossing, are discussed. 

I. INTRODUCTION 

Table 1: Notation used in this paper. 
e electron chnrge 
r radial position 
X,Y transverse coordinates 
z longitudinal coordinate 
c speed of light 
s=z-ct beam coordinate 
P particle momentum 
, d/ds 
‘i rms. beam size in i dim. 

P Beta-function 
a Courant-Snyder amplitude 
N # electrons in bunch 
* denotes evaluation at IP 

An ultra-relativistic particle with longitudinal 
coordinates, has E-M fields which are ne,arly normal to the 
direction of motion, and may be approximated as[ l] 

E, =%(s-so) 
r 

where the notation is given in Table 1. Since particles do not 
all collide head on there is some longitudinal kick given 
during the beam-beam interaction. The net longitudinal kick 
can be obtained for a single particle by taking the projection of 
the transverse fields from the opposing beam onlo the design 
orbit of the particle and integrating over the betntron phase 
space of the opposing beam. The resulting energy kick can be 
thought of as arising from two sources: a) longitudinal fields, 
and b) the work done by the transverse motion of the particle 
against the transverse fields. 

For beams that do not collide at the nominal intcrnction 
point (IP), there is a time dependent beta funcrion,p(s), and 
the beam size variation gives rise to an inductive longitudinal 
field. The longitudinal momentum has been previously de&cd 
from a straight forward ret,arded relativistic calculation[2]. In 
the limit that the beams are shorter than p* (this limit is 
assumed Ed throughout this paper), these kicks can also be 

derived from a form of the Panofsky-Wenzel Theorem which is 
generalized to include fields arising from free chnrges [see 
Appendix], 

@@,. > %(APr)=~ . (2) 

We will employ the Panofsky-Wenzel theorem method in this 
paper, as it is simpler and more powerful than doing the 
straight forward calculation, especially for off-axis pnrticles. 

II. THE LONGITUDINAL BEAM-BEAM INTERACTION 

The longitudinal kick due to transverse motion is the sum 
of the individual kicks a particle receives traversing the 
opposing bunch, calculated by integrating over the phase space 
of the opposing bunch. The resulting differential equation for 
the transverse acceleration involves complex error functions 
for elliptical beams. 

A focused gaussinn beam is described by a time dcpendcnt 
ch‘arge density and has associated transverse currents given by 
the continuity equation. By integrating the charge and current 
densities we obtain the corresponding scalar and vector 
potentials, which intern describe associated electric and 
magnetic fields. The Lorentz force law may then be used to 
compute the instantaneous acceleration felt by a test particle 
traversing these fields. The resulting equations contain very 
tedious integrals that may be solved numerically [2]. 

Both cases yield results that are not intuitive and do not 
allow for an estimate of the size of these kicks which could 
determine the importance of this analysis for circular colliders. 
Therefore we will now consider certain limiting cases. 

A. Routd Becms 

The energy change (A,!?) an off-axis test particle which travels 
al a nonzero angle with respect to the axis receives passing 
through an opposing beam is given by projecting the orbit of 
the particle onto the field of the opposing beam p,articles, as 
given by Eq. (1). Assuming a round beam with a gaussian 
distribution, Eq. (1) can be integrated to give the total energy 
change per plunge: 

-=-~[i-exp[-g)]~.,‘+y~~. (4) 

Averaging over a betatron oscillation (which is assumed to be 
much shorter than a synchrotron oscillation), and expanding 
equation (4) for r < 0, reduces this to 

*E = Nc’P’(f) ax + a, [ 1 2/q+) 2E ’ 
(5) 

where we have introduced Ihe Courant-Snyder amplitudes of 
the particle. Note that if rhe beams do not collide at the 
nominal IP, implying that0 f 0, the energy kick averaged 
over a betalron oscillation is non-vanishing. 
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The energy kick due to the inductive field is computed 
using the Panofsky-Wenzel Theorem: 

4h) = 4*d 
f3r as * 

For round beams the transverse kick is, from equation (4), 

Ap, =2fff-[l-exp(-$)J. 

Since 

(G) 

(7) 

(8) 

has an s dependence, the longitudinal kick is obtained using 
Eqs. (7) and (8), and integrating the Panofsky-Wenzel 
expression (taking the boundary condition Al>lr=- = 0) to 
yield 

AE = Ap,c = N;;w:i’ exp(-$1 
; r 

Averaging over a betatron oscillation for r < 0, we have 

LiE = Ne*P (f> 
- 2/q+) 

[i-y]. 

(9) 

and the amplitude dependence of this kick is canceled by the 
term found in Eq. (5). Previous ,analysis[l] has not included 
this cancellation, which makes the energy kick more uniform 
as a function of position. The resulting total energy kick for 
round beams is 

AE = Apzc = 
Ne*p’ ($) 

W($) ’ 
(10) 

This energy kick, which is now correlated only to the relative 
longitudinal position of the oncoming bunch, can contribute 
to a coherent instability, as discussed in section III. 

B. Flat Beams 

Other relevant aspects of the beam-beam interaction can 
be analyzed in the limit that 0, >> oy. In this quasi-one 
dimensionaJ case the Panofsky-Wenzel theorem reads 

4~~~1 444 dy =-r- 
The transverse kick in a gaussian benm is given by 

(11) 

Ap 
Y (12) 

where 
1 

(13) 

The contribution to the energy kick is now due to transverse 
motion can be found in analogy to Eq. 4. Also, the inductive 
energy kick is, using Eq. (1 l), 

AE=A&c= Ne*o,P; ($) 
2crxpy (“i) (14) 

Again, the transverse dependence is proportional to the current 
density. a variation which is canceled exactly by the energy 
kick due to transverse motion derivable from Eq. 12 for small 
amplitude (y < 0;) particles. Note that this expression is 
smaller th‘an the equivalent round beam formula (Eq. (10)) by a 
factor of R = cry/o,. This factor is due to larger average 
distances between particles (R/2) and weaker focusing in the x- 
dimension (2). 

III. COHERENT BEAM-BEAM OSCILLATIONS 

Longitudinal beam-beam effects can drive a coherent 
longitudinal oscillation. While this subject has been analyzed 
before[l], it has never been understood that the longitudinal 
beam-beam kick is nearly independent of x and y. The coupled 
equations of motion for the be,am centroids (s,,~) are 

s,” + c&s, = (k)k,,(s, -s*) 

s*” + w,2s2 = (+-)k[,b& -s,) 
(1% 

Here, &, E VL, / V;, the rf gradient V; = krfVrf, and V&, 

(the effective beam-be‘am gradient) includes components due to 
both pnrallel and transverse motion of the beam particles: 

Ne* 
“G, = m. w-3 

The + (-) sign rcfcrs to operation above (below) transition. 
Above transition, we obtain the dispersion relation 

w = w,(l- 2k,;,)f. (17) 
Thus the instability threshold, which occurs when w=O, is 
given by 2V&, = ,,-. V’ If the vertical beta function is lowered 

by a factor TJ, then VLh will incrense by a factor of q*. This 
is a strong dependence and may indicate trouble with higher 
luminosity designs. 

If the machine is run below transition, the frequency of 
the coupled mode becomes 

w= w,(1+2k,,)+ (18) 
and there is no possibility of this coherent longitudinal 
instability. 

IV. IMPLICATIONS FOR LOW ENERGY COLLIDERS 

A. (p Factories 

For the UCLA rp -factory design parameters, the expected 
energy kick for a one CT, particle is - 1 keV. The rf voltage 
gradient V,) = 1 MeV/m is quite small due to the quasi- 
isochronous condition being employed. With N=1.6 x loll, 
R=7, /3;= 4 mm, and emittances of 1.1 x 10m6 m-rad in both 
x and y, the effective beam-beam gradient is 

Ne* 
eV&, = - = 

2RP** 
1 MeV/m . (19) 

If the machine is run above transition, this gradient is 
longitudinally defocusing, and one would expect serious bunch 
lengthening, since to fist order there is complete longitudinal 
defocusing, 
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i 1 

-3 
a,= &!!b?. =M 
o- 20 Tf 

(20) 

This system is also above threshold for the longitudinal 
instability by a factor of two in beam charge. 

If the machine is designed to operate below transition, the 
beams have stable coherent longitudinal motion. The benm- 
beam effects reinforce the rf focusing because 

o* - l-v,:, 
t 1 

-4 

0 20 ?f 

=&. (21) 

This implies that the bunches could be shortened allowing 
shorter bunches than present designs indicate. 

B. B Factories with Crab Crossing 

Crab crossing schemes (Figure 1) may bc necessnry to 
provide the high luminosity’s (-3 x 103j) required for B- 
factories. 

I 1 
electrons positrons 

c I 
Figure 1: Schematic representation of crab crossing. Crab 
cavities apply time dependent rf kicks which tilt the bunches. 
After the collision, another set of crab cavities kick the beams 
back to there original orientations. 

*p=;; pb$+r@bA;-@) 
[ 1 dz. (27) 

z 

Outside of region R. i = 0, leaving 

Ap= t[s$l”; -.!,]. 

The longitudinal beam-beam interaction could become 
important in this type of scheme. Recall that the energy kick 
due to transverse motion for round beams contains terms 
proportional to xx’,yy’. For crab crossing the angle X’ is 
now essentially to the crossing angle. The resulting energy 
kick may again lead to large longitudinal effects. This issue 
needs to be investigated further. 

Since it can be derived from a potential, Ap satisfies the 
relation 

vx(Ajj)=O 
(29) 

In shorthand notation, this can be written as 

?,(A/,Z) = y. 00) i 

V. CONCLUSION REFERENCES 

This paper has analyzed two types of longitudinal kicks 
arising from the longitudinal benm-beam interaction: those due 
to the transverse particle motion coupling to the transverse 
portion of the electric kick, and those derived from the 
inductive electric field induced near the interaction point. 
These effects may become important in low energy or high 
luminosity colliders (cp & B factories) since they may lead to 
coherent longitudinal instabilities. These effects can be 
minimized by the use of flat beams. In addition, if coherent 
instabilities become a problem, it may be necessary to operate 
below transition. The effect on low energy colliders such as B- 
factories which may utilize crab crossing to improve 
luminosity ncedr to be addressed further. 

Appendix: Generalized Partofsky-Wenzel Theorem 

The Panofsky-Wenzel theorem gives a relationship between 
the integrated longitudinal and transverse momentum kicks a 
p&article receives as it traverses a medium or device excited in 
the wnke of another particle [4]. This appendix will generalize 
this theorem to include fields arising from free charges. 
assuming that fields and potentials vanish at infinity, and that 
the particle receiving the kick travels p,arallel to the z axis. In 
general. an electric field E may be described in terms of a 
scalnr potential (0 ) and vector potential ( 2 ): 

&-I&-pj) 
c ar 

Inserting (22) into the Lorentz force equation 

and noting that for a particle traveling parallel to the z-axis 

‘~l)xB=Poix(Vx~)=~(PbA;)-Pb~ (24) I 
we obtain the following expression for W. the force per unit 
charge q: 

w=-f~-~~-[p(B~a,)+ip,~]. (25) 

By noting that 

~[~+vb$p$$$, (26) 

equation (25) can be rewritten as 

(28) 
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